Castle Bravo was the first in a series of high-yield thermonuclear weapon design tests conducted by the United States at Bikini Atoll, Marshall Islands, as part of Operation Castle. Detonated on March 1, 1954, the device was the most powerful nuclear device detonated by the United States and the first lithium deuteride-fueled thermonuclear weapon ever tested using the Teller-Ulam design. Castle Bravo's yield was , 2.5 times the predicted , due to unforeseen additional reactions involving lithium-7, which led to radioactive contamination in the surrounding area.
Fallout, the heaviest of which was in the form of pulverized surface coral from the detonation, fell on residents of Rongelap and Utirik atolls, while the more particulate and gaseous fallout spread around the world. The inhabitants of the islands were not evacuated until three days later and suffered radiation sickness. Twenty-three crew members of the Japanese fishing vessel Daigo Fukuryū Maru ("Lucky Dragon No. 5") were also contaminated by the heavy fallout, experiencing acute radiation syndrome. The blast incited a strong international reaction over atmospheric thermonuclear testing.
The Bravo Crater is located at . The remains of the Castle Bravo causeway are at .
The Castle Bravo device was housed in a cylinder that weighed and measured in length and in diameter.
The primary device was a COBRA deuterium-tritium gas-boosted atomic bomb made by Los Alamos Scientific Laboratory, a very compact MK 7 device. This boosted fission device was tested in the Upshot Knothole Climax event and yielded (out of 50–70 kt expected yield range). It was considered successful enough that the planned operation series Domino, designed to explore the same question about a suitable primary for thermonuclear bombs, could be canceled. The implosion system was quite lightweight at , because it eliminated the aluminium pusher shell around the tamper and used the more compact ring lenses, a design feature shared with the Mark 5, 12, 13 and 18 designs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric.
Enewetak Atoll (ɛˈniːwəˌtɔːk,_ˌɛnɪˈwiːtɔːk; also spelled Eniwetok Atoll or sometimes Eniewetok; Ānewetak, yan&yweytak, or Āne-wātak, yan&y-waytak; known to the Japanese as Brown Atoll or Brown Island; ブラウン環礁) is a large coral atoll of 40 islands in the Pacific Ocean and with its 296 people (as of 2021) forms a legislative district of the Ralik Chain of the Marshall Islands. With a land area total less than , it is no higher than and surrounds a deep central lagoon, in circumference.
The Tsar Bomba (Tsar'-bomba, Tsar bomb; code name: Ivan or Vanya), also known by the alphanumerical designation "AN602", was a thermonuclear aerial bomb, and the most powerful nuclear weapon ever created and tested. The Soviet physicist Andrei Sakharov oversaw the project at Arzamas-16, while the main work of design was by Sakharov, Viktor Adamsky, Yuri Babayev, Yuri Smirnov, and Yuri Trutnev.
Explores plasma physics, nuclear fusion, and experimental techniques for studying tokamak boundary plasmas, aiming to achieve clean and sustainable energy production.
In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and reactions between thermal ions and fast particles generated by neutral beam injection (NBI) heating or accelerated by electromagnetic wave heating in t ...
Reduction in stimulated Brillouin scattering (SBS) from National Ignition Facility Hohlraums has been predicted through the use of multi-ion species materials on Hohlraum walls. This approach to controlling SBS is based upon introducing a lighter ion speci ...
AIP Publishing2023
, ,
YMgNi4-based alloys exhibit reversible hydrogen absorption and desorption reactions at near room temperature. Here, we report that Co-substituted YMgNi4-based alloys exhibited higher hydrogen contents and lower hydrogen absorption and desorption reaction p ...