A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, one that measures the direction of an ambient magnetic field, in this case, the Earth's magnetic field. Other magnetometers measure the magnetic dipole moment of a magnetic material such as a ferromagnet, for example by recording the effect of this magnetic dipole on the induced current in a coil.
The first magnetometer capable of measuring the absolute magnetic intensity at a point in space was invented by Carl Friedrich Gauss in 1833 and notable developments in the 19th century included the Hall effect, which is still widely used.
Magnetometers are widely used for measuring the Earth's magnetic field, in geophysical surveys, to detect magnetic anomalies of various types, and to determine the dipole moment of magnetic materials. In an aircraft's attitude and heading reference system, they are commonly used as a heading reference. Magnetometers are also used by the military as a triggering mechanism in magnetic mines to detect submarines. Consequently, some countries, such as the United States, Canada and Australia, classify the more sensitive magnetometers as military technology, and control their distribution.
Magnetometers can be used as metal detectors: they can detect only magnetic (ferrous) metals, but can detect such metals at a much greater distance than conventional metal detectors, which rely on conductivity. Magnetometers are capable of detecting large objects, such as cars, at over , while a conventional metal detector's range is rarely more than .
In recent years, magnetometers have been miniaturized to the extent that they can be incorporated in integrated circuits at very low cost and are finding increasing use as miniaturized compasses (MEMS magnetic field sensor).
Magnetic fields are vector quantities characterized by both strength and direction.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This multidisciplinary course presents, from both engineering and medical perspectives, the state-of-the-art, applications and impact of wearable and implantable technologies, with focus on cardiovasc
The course provides the basis to understand the physics, the key performance, and the research and industrial applications of magnetic sensors and actuators. Together with a detailed introduction to m
Comprendre les principes physiques utilisés dans les capteurs. Vue générale des différents principes de transduction et de l'électronique associée. Montrer des exemples d'application.
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo.
A SQUID (superconducting quantum interference device) is a very sensitive magnetometer used to measure extremely weak magnetic fields, based on superconducting loops containing Josephson junctions. SQUIDs are sensitive enough to measure fields as low as 5×10−14 T with a few days of averaged measurements. Their noise levels are as low as 3 fT·Hz−. For comparison, a typical refrigerator magnet produces 0.01 tesla (10−2 T), and some processes in animals produce very small magnetic fields between 10−9 T and 10−6 T.
A magnetic anomaly detector (MAD) is an instrument used to detect minute variations in the Earth's magnetic field. The term refers specifically to magnetometers used by military forces to detect submarines (a mass of ferromagnetic material creates a detectable disturbance in the magnetic field); military MAD equipment is a descendant of geomagnetic survey or aeromagnetic survey instruments used to search for minerals by detecting their disturbance of the normal earth-field.
Explores copper-based magnetometers for measuring magnetization and susceptibility using dynamic flux changes and different detector configurations.
Explores successful MEMS products like accelerometers and their fabrication process, as well as their application in car airbags and smartphones.
Explores magnetic sensors like fluxgate and reed relay, emphasizing their applications in measuring weak magnetic fields and as on/off sensors based on magnetic attraction.
The search for new materials for energy -efficient electronic devices has gained unprecedented importance. Among the various classes of magnetic materials driving this search are antiferromagnets, magnetoelectrics, and systems with topological spin excitat ...
Amer Physical Soc2024
This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
We study the solution of the two-temperature Fokker-Planck equation and rigorously analyse its convergence towards an explicit non-equilibrium stationary measure for long time and two widely separated time scales. The exponential rates of convergence are e ...