A carbon tax is a tax levied on the carbon emissions required to produce goods and services. Carbon taxes are intended to make visible the "hidden" social costs of carbon emissions, which are otherwise felt only in indirect ways like more severe weather events. In this way, they are designed to reduce greenhouse gas emissions by increasing prices of the fossil fuels that emit them when burned. This both decreases demand for goods and services that produce high emissions and incentivizes making them less carbon-intensive. In its simplest form, a carbon tax covers only CO2 emissions; however, it could also cover other greenhouse gases, such as methane or nitrous oxide, by taxing such emissions based on their CO2-equivalent global warming potential. When a hydrocarbon fuel such as coal, petroleum, or natural gas is burned, most or all of its carbon is converted to CO2. Greenhouse gas emissions cause climate change, which damages the environment and human health. This negative externality can be reduced by taxing carbon content at any point in the product cycle. Carbon taxes are thus a type of Pigovian tax.
Research shows that carbon taxes effectively reduce emissions. Many economists argue that carbon taxes are the most efficient (lowest cost) way to tackle climate change. Seventy-seven countries and over 100 cities have committed to achieving net zero emissions by 2050. , carbon taxes have been implemented or scheduled for implementation in 25 countries, while 46 countries put some form of price on carbon, either through carbon taxes or emissions trading schemes.
On their own, carbon taxes are usually regressive, since lower-income households tend to spend a greater proportion of their income on emissions-heavy goods and services like transportation than higher-income households. As such, carbon taxes negatively effect the welfare of poorer people by making their consumption more expensive, even if the taxes are more progressive.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mainly based on the discussion of peer reviewed academic papers, the course introduces non economists to the main types of applied models used in environmental economic analysis: linear programming, p
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Climate change mitigation is action to limit climate change by reducing emissions of greenhouse gases or removing those gases from the atmosphere. The recent rise in global average temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. Mitigation can reduce emissions by transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide () from the atmosphere by enlarging forests, restoring wetlands and using other natural and technical processes.
Emissions trading is a market-based approach to controlling pollution by providing economic incentives for reducing the emissions of pollutants. The concept is also known as cap and trade (CAT) or emissions trading scheme (ETS). Carbon emission trading for and other greenhouse gases has been introduced in China, the European Union and other countries as a key tool for climate change mitigation. Other schemes include sulfur dioxide and other pollutants.
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Qu'est-ce qui détermine les prix fonciers et les prix immobiliers en général? Comprenez les liens de ces prix avec les taux d'intérêt, les rentes foncières et les loyers. Un cours d'économie pour les
Qu'est-ce qui détermine les prix fonciers et les prix immobiliers en général? Comprenez les liens de ces prix avec les taux d'intérêt, les rentes foncières et les loyers. Un cours d'économie pour les
Quels sont les liens entre les prix fonciers, les prix immobiliers et les prix pour l'usage des immeubles? Est-ce que les prix immobiliers permettent de comprendre les prix fonciers? Ou l'inverse? Que
Renewable energy sources offer a promising solution for mitigating sustainability and CO2 emissions-related issues due to their vast energy generation capacity. They enable hydrogen production via water electrolysis, as well as carbon capture and utilizati ...
EPFL2024
, ,
In order to alleviate the environmental impact that nitrogen fertilizers production is responsible for, several efforts have been addressed to incentivize the partial or total decarbonization of the supply chains of ammonia and its derivatives. The decarbo ...
2024
,
The transition to a low-carbon economy can create new job opportunities but may cause job displacement in some sectors that heavily rely on fossil fuels. In order to gain a balanced appraisal in understanding the broader consequences of climate policies, t ...