Summary
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix A is denoted det(A), det A, or . The determinant of a 2 × 2 matrix is and the determinant of a 3 × 3 matrix is The determinant of an n × n matrix can be defined in several equivalent ways. The Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of n different entries, and the number of these summands is the factorial of n (the product of the n first positive integers). The Laplace expansion expresses the determinant of an n × n matrix as a linear combination of determinants of submatrices. Gaussian elimination expresses the determinant as the product of the diagonal entries of a diagonal matrix that is obtained by a succession of elementary row operations. Determinants can also be defined by some of their properties: the determinant is the unique function defined on the n × n matrices that has the four following properties. The determinant of the identity matrix is 1; the exchange of two rows (or of two columns) multiplies the determinant by −1; multiplying a row (or a column) by a number multiplies the determinant by this number; and adding to a row (or a column) a multiple of another row (or column) does not change the determinant. Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in a system of linear equations, and determinants can be used to solve these equations (Cramer's rule), although other methods of solution are computationally much more efficient.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-110(a): Advanced linear algebra I
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
Show more
Related lectures (232)
Homology of Riemann Surfaces
Explores the homology of Riemann surfaces, including singular homology and the standard n-simplex.
Interlacing Family and Matrix Determinant Lemma
Explores interlacing family, matrix determinant lemma, and random matrix characteristics.
Meromorphic Functions & Differentials
Explores meromorphic functions, poles, residues, orders, divisors, and the Riemann-Roch theorem.
Show more
Related publications (65)

Preserving the positivity of the deformation gradient determinant in intergrid interpolation by combining RBFs and SVD: Application to cardiac electromechanics

Alfio Quarteroni, Francesco Regazzoni

The accurate, robust and efficient transfer of the deformation gradient tensor between meshes of different resolution is crucial in cardiac electromechanics simulations. This paper presents a novel method that combines rescaled localized Radial Basis Funct ...
Lausanne2023

CEO networks and the labor market for directors?

Rüdiger Fahlenbrach, Hyemin Kim

Directors at firms with well-connected CEOs are more likely to obtain directorships at firms that are connected to the CEOs. Recommended directors do not become beholden to the CEO. Reciprocity is an important determinant of recommendations because CEOs ar ...
ELSEVIER2023

Preconditioning techniques for generalized Sylvester matrix equations

Yannis Dirk Voet

Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they recently arose in stochastic Galerkin finite element discretizations and isogeometric analysis. In th ...
2023
Show more
Related concepts (25)
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Computational complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Invertible matrix
In linear algebra, an n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or (rarely used) regular), if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix A.
Show more
Related MOOCs (10)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more