Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics.
Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields. Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory.
The word algebra is not only used for naming an area of mathematics and some subareas; it is also used for naming some sorts of algebraic structures, such as an algebra over a field, commonly called an algebra. Sometimes, the same phrase is used for a subarea and its main algebraic structures; for example, Boolean algebra and a Boolean algebra. A mathematician specialized in algebra is called an algebraist.
The word algebra comes from the الجبر from the title of the early 9th century book ʿIlm al-jabr wa l-muqābala "The Science of Restoring and Balancing" by the Persian mathematician and astronomer al-Khwarizmi. In his work, the term al-jabr referred to the operation of moving a term from one side of an equation to the other, المقابلة al-muqābala "balancing" referred to adding equal terms to both sides. Shortened to just algeber or algebra in Latin, the word eventually entered the English language during the 15th century, from either Spanish, Italian, or Medieval Latin. It originally referred to the surgical procedure of setting broken or dislocated bones. The mathematical meaning was first recorded en in the 16th century.
The word "algebra" has several related meanings in mathematics, as a single word or with qualifiers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, especially in the fields of group theory and representation theory of groups, a class function is a function on a group G that is constant on the conjugacy classes of G. In other words, it is invariant under the conjugation map on G. Such functions play a basic role in representation theory. The character of a linear representation of G over a field K is always a class function with values in K. The class functions form the center of the group ring K[G]. Here a class function f is identified with the element .
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient.
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, D_n or Dih_n refers to the symmetries of the n-gon, a group of order 2n. In abstract algebra, D_2n refers to this same dihedral group.
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
Linear algebra is the branch of mathematics concerning linear equations such as: linear maps such as: and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...