In chemistry, chemical synthesis (chemical combination) is the artificial execution of chemical reactions to obtain one or several products. This occurs by physical and chemical manipulations usually involving one or more reactions. In modern laboratory uses, the process is reproducible and reliable.
A chemical synthesis involves one or more compounds (known as reagents or reactants) that will experience a transformation when subjected to certain conditions. Various reaction types can be applied to formulate a desired product. This requires mixing the compounds in a reaction vessel, such as a chemical reactor or a simple round-bottom flask. Many reactions require some form of processing ("work-up") or purification procedure to isolate the final product.
The amount produced by chemical synthesis is known as the reaction yield. Typically, yields are expressed as a mass in grams (in a laboratory setting) or as a percentage of the total theoretical quantity that could be produced based on the limiting reagent. A side reaction is an unwanted chemical reaction occurring which reduces the desired yield. The word synthesis was used first in a chemical context by the chemist Hermann Kolbe.
Many strategies exist in chemical synthesis that are more complicated than simply converting a reactant A to a reaction product B directly. For multistep synthesis, a chemical compound is synthesized by a series of individual chemical reactions, each with its own work-up. For example, a laboratory synthesis of paracetamol can consist of three sequential parts. For cascade reactions, multiple chemical transformations occur within a single reactant, for multi-component reactions as many as 11 different reactants form a single reaction product and for a "telescopic synthesis" one reactant experiences multiple transformations without isolation of intermediates.
Organic synthesis and biochemistry
Organic synthesis is a special type of chemical synthesis dealing with the synthesis of organic compounds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of this course is to instruct the student how fundamental scientific knowledge can be applied for drug discovery and development. We will demonstrate these principles with examples, including
This training will empowered the student with all the tools of modern chemistry, which will be highly useful for his potential career as a process or medicinal chemist in industry.
In chemistry, yield, also referred to as reaction yield, is a measure of the quantity of moles of a product formed in relation to the reactant consumed, obtained in a chemical reaction, usually expressed as a percentage. Yield is one of the primary factors that scientists must consider in organic and inorganic chemical synthesis processes. In chemical reaction engineering, "yield", "conversion" and "selectivity" are terms used to describe ratios of how much of a reactant was consumed (conversion), how much desired product was formed (yield) in relation to the undesired product (selectivity), represented as X, Y, and S.
Products are the species formed from chemical reactions. During a chemical reaction, reactants are transformed into products after passing through a high energy transition state. This process results in the consumption of the reactants. It can be a spontaneous reaction or mediated by catalysts which lower the energy of the transition state, and by solvents which provide the chemical environment necessary for the reaction to take place. When represented in chemical equations, products are by convention drawn on the right-hand side, even in the case of reversible reactions.
In chemistry, the term substrate is highly context-dependent. Broadly speaking, it can refer either to a chemical species being observed in a chemical reaction, or to a surface on which other chemical reactions or microscopy are performed. In the former sense, a reagent is added to the substrate to generate a product through a chemical reaction. The term is used in a similar sense in synthetic and organic chemistry, where the substrate is the chemical of interest that is being modified.
Macrocycles provide an attractive modality for drug development but the identification of ligands to targets of interest is hindered by the lack of large macrocyclic compound libraries for high-throughput screening. A strategy to efficiently synthesize lar ...
Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building b ...
An organic dye photocatalyzed lactonization-alkynylation of easily accessible homoallylic cesium oxalates using ethynylbenziodoxolone (EBX) reagents has been developed. The reaction gave access to valuable functionalized lactones and lactams in up to 88% y ...