Summary
A ball mill is a type of grinder used to grind or blend materials for use in mineral dressing processes, paints, pyrotechnics, ceramics, and selective laser sintering. It works on the principle of impact and attrition: size reduction is done by impact as the balls drop from near the top of the shell. A ball mill consists of a hollow cylindrical shell rotating about its axis. The axis of the shell may be either horizontal or at a small angle to the horizontal. It is partially filled with balls. The grinding media are the balls, which may be made of steel (chrome steel), stainless steel, ceramic, or rubber. The inner surface of the cylindrical shell is usually lined with an abrasion-resistant material such as manganese steel or rubber lining. Less wear takes place in rubber lined mills. The length of the mill is approximately equal to its diameter. The general idea behind the ball mill is an ancient one, but it was not until the industrial revolution and the invention of steam power that an effective ball milling machine could be built. It is reported to have been used for grinding flint for pottery in 1870. In case of continuously operated ball mill, the material to be ground is fed from the left through a 60° cone and the product is discharged through a 30° cone to the right. As the shell rotates, the balls are lifted up on the rising side of the shell and then they cascade down (or drop down on to the feed), from near the top of the shell. In doing so, the solid particles in between the balls and ground are reduced in size by impact. Ball mills are used for grinding materials such as mining ores, coal, pigments, and feldspar for pottery. Grinding can be carried out wet or dry, but the former is performed at low speed. Ball mills are used often in scientific work to reduce the particle size, eliminate agglomeration, change the shape of particles, provide for mechanical alloying, mixing, producing powders and changing materials properties. An open source ball mill has been designed that can be fabricated with a 3D printer for a few hundred dollars.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-326: Ceramic and colloidal processing
The course covers the production of ceramics and colloids from the basic scientific concepts and theories needed to understand the forming processes to the mechanisms and methods of sintering (firing)
Related lectures (5)
Ceramic Materials Processing: Techniques and Analysis
Explores ceramic materials processing techniques like laser diffraction, sieving, sedimentation testing, slip casting, and density determination.
Show more
Related publications (4)

On the relationship between the microstructure and the mechanical properties of an ODS ferritic/martensitic steel

Amuthan Ramar

In the quest of materials for the first wall of the future fusion reactor, it has been shown that oxide dispersion strengthened (ODS) ferritic / martensitic (F/M) steels appear to be promising candidates. The inherent good mechanical properties supported b ...
EPFL2008

Preparation and properties of KNbO3-based piezoelectric ceramics

Evelyn Hollenstein

During the last several years, new lead-free piezoelectric materials have been developed to replace the lead-based materials, such as PZT. Presently, the family of lead-free ceramics showing the most promising piezoelectric properties is based on potassium ...
EPFL2007

Processing of homogeneous ceramic/polymer blends for bioresorbable composites

Pierre-Etienne Bourban

Three methods to mix ceramic fillers, hydroxyapatite or β-tricalcium phosphate, with a polymer matrix, a poly l-lactic acid, are investigated as a first step prior to supercritical foaming to prepare porous composite structures for biomedical applications. ...
2006
Show more
Related concepts (1)
Ceramic
A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick. The earliest ceramics made by humans were pottery objects (pots, vessels, or vases) or figurines made from clay, either by itself or mixed with other materials like silica, hardened and sintered in fire.