Nuclear quadrupole resonance spectroscopy or NQR is a chemical analysis technique related to nuclear magnetic resonance (NMR). Unlike NMR, NQR transitions of nuclei can be detected in the absence of a magnetic field, and for this reason NQR spectroscopy is referred to as "zero Field NMR". The NQR resonance is mediated by the interaction of the electric field gradient (EFG) with the quadrupole moment of the nuclear charge distribution. Unlike NMR, NQR is applicable only to solids and not liquids, because in liquids the electric field gradient at the nucleus averages to zero (the EFG tensor has trace zero). Because the EFG at the location of a nucleus in a given substance is determined primarily by the valence electrons involved in the particular bond with other nearby nuclei, the NQR frequency at which transitions occur is unique for a given substance. A particular NQR frequency in a compound or crystal is proportional to the product of the nuclear quadrupole moment, a property of the nucleus, and the EFG in the neighborhood of the nucleus. It is this product which is termed the nuclear quadrupole coupling constant for a given isotope in a material and can be found in tables of known NQR transitions. In NMR, an analogous but not identical phenomenon is the coupling constant, which is also the result of an internuclear interaction between nuclei in the analyte.
Any nucleus with more than one unpaired nuclear particle (protons or neutrons) will have a charge distribution which results in an electric quadrupole moment. Allowed nuclear energy levels are shifted unequally due to the interaction of the nuclear charge with an electric field gradient supplied by the non-uniform distribution of electron density (e.g. from bonding electrons) and/or surrounding ions. As in the case of NMR, irradiation of the nucleus with a burst of RF electromagnetic radiation may result in absorption of some energy by the nucleus which can be viewed as a perturbation of the quadrupole energy level.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Magnetic resonance imaging (MRI) and spectroscopy (MRS) will be addressed in detail, along with experimental design, data gathering and processing on MRS, structural and functional MRI in humans and r
Magnetic resonance imaging (MRI) and spectroscopy (MRS) will be addressed in detail, along with experimental design, data gathering and processing on MRS, structural and functional MRI in humans and r
This course covers the basic biophysical principles governing the thermodynamic and kinetic properties of biomacromolecules involved in chemical processes of life.
The course is held in English.
Covers the probabilistic model for linear regression and its applications in nuclear magnetic resonance and X-ray imaging.
Explores linear regression from a statistical inference perspective, covering probabilistic models, ground truth, labels, and maximum likelihood estimators.
Explores molecular orbitals, bond orders, Hückel theory, and intermolecular forces in conjugated systems.
Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy.
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Nuclear magnetic resonance (NMR) methods are powerful tools employed in many fields, including physics, chemistry, material science, biology, and medicine. The use of NMR methodologies in an even wider range of applications is often hindered by the relativ ...
EPFL2023
,
To date, the vast majority of architected materials have leveraged two physical principles to control wave behavior, namely, Bragg interference and local resonances. Here, we describe a third path: structures that accommodate a finite number of delocalized ...
Solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) is a nuclear magnetic resonance spectroscopy technique in which nuclear spin hyperpolarization is generated upon optical irradiation of an appropriate donor-acceptor system. Unt ...