Stella octangula as a faceting of the cube In geometry, faceting (also spelled facetting) is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices. New edges of a faceted polyhedron may be created along face diagonals or internal space diagonals. A faceted polyhedron will have two faces on each edge and creates new polyhedra or compounds of polyhedra. Faceting is the reciprocal or dual process to stellation. For every stellation of some convex polytope, there exists a dual faceting of the dual polytope. For example, a regular pentagon has one symmetry faceting, the pentagram, and the regular hexagon has two symmetric facetings, one as a polygon, and one as a compound of two triangles. The regular icosahedron can be faceted into three regular Kepler–Poinsot polyhedra: small stellated dodecahedron, great dodecahedron, and great icosahedron. They all have 30 edges. The regular dodecahedron can be faceted into one regular Kepler–Poinsot polyhedron, three uniform star polyhedra, and three regular polyhedral compound. The uniform stars and compound of five cubes are constructed by face diagonals. The excavated dodecahedron is a facetting with star hexagon faces. Faceting has not been studied as extensively as stellation. In 1568 Wenzel Jamnitzer published his book Perspectiva Corporum Regularium, showing many stellations and facetings of polyhedra. In 1619, Kepler described a regular compound of two tetrahedra which fits inside a cube, and which he called the Stella octangula. In 1858, Bertrand derived the regular star polyhedra (Kepler–Poinsot polyhedra) by faceting the regular convex icosahedron and dodecahedron. In 1974, Bridge enumerated the more straightforward facetings of the regular polyhedra, including those of the dodecahedron. In 2006, Inchbald described the basic theory of faceting diagrams for polyhedra. For a given vertex, the diagram shows all the possible edges and facets (new faces) which may be used to form facetings of the original hull.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.