Stella octangula as a faceting of the cube In geometry, faceting (also spelled facetting) is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices. New edges of a faceted polyhedron may be created along face diagonals or internal space diagonals. A faceted polyhedron will have two faces on each edge and creates new polyhedra or compounds of polyhedra. Faceting is the reciprocal or dual process to stellation. For every stellation of some convex polytope, there exists a dual faceting of the dual polytope. For example, a regular pentagon has one symmetry faceting, the pentagram, and the regular hexagon has two symmetric facetings, one as a polygon, and one as a compound of two triangles. The regular icosahedron can be faceted into three regular Kepler–Poinsot polyhedra: small stellated dodecahedron, great dodecahedron, and great icosahedron. They all have 30 edges. The regular dodecahedron can be faceted into one regular Kepler–Poinsot polyhedron, three uniform star polyhedra, and three regular polyhedral compound. The uniform stars and compound of five cubes are constructed by face diagonals. The excavated dodecahedron is a facetting with star hexagon faces. Faceting has not been studied as extensively as stellation. In 1568 Wenzel Jamnitzer published his book Perspectiva Corporum Regularium, showing many stellations and facetings of polyhedra. In 1619, Kepler described a regular compound of two tetrahedra which fits inside a cube, and which he called the Stella octangula. In 1858, Bertrand derived the regular star polyhedra (Kepler–Poinsot polyhedra) by faceting the regular convex icosahedron and dodecahedron. In 1974, Bridge enumerated the more straightforward facetings of the regular polyhedra, including those of the dodecahedron. In 2006, Inchbald described the basic theory of faceting diagrams for polyhedra. For a given vertex, the diagram shows all the possible edges and facets (new faces) which may be used to form facetings of the original hull.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
Séances de cours associées (5)
Polyèdre régulier : définitions et symmétries
Explore les définitions et les symétries de polyèdre régulier, éclairant la géométrie ancienne et la formalisation mathématique moderne.
Polyèdre régulier: Symmetries & Génération
Explore les propriétés de polyèdre régulier, leurs symétries, leur génération et leurs idées fausses historiques.
Visages, visages et sommets
Couvre les concepts de visages, de facettes et de sommets en polyèdre, explorant des visages et des inégalités minimes.
Afficher plus
Publications associées (13)

Site-selective overgrowth of Ag nanocrystals by Polyvinylpyrrolidone-mediated atom deposition by Ostwald ripening

Francesco Stellacci, Paulo Henrique Jacob Silva, Alejandro Lapresta Fernandez

The growth modulation of metal nanocrystals (NCs) by Ostwald ripening (OR) involves control of the relocation of matter by diffusional mass transfer from the dissolution of small nanocrystals (SNCs) towards large nanocrystals whose surface energy is lower. ...
ELSEVIER2022

New Results in Integer and Lattice Programming

Christoph Hunkenschröder

An integer program (IP) is a problem of the form min{f(x):Ax=b, lxu, xZn}\min \{f(x) : \, Ax = b, \ l \leq x \leq u, \ x \in \Z^n\}, where AZm×nA \in \Z^{m \times n}, bZmb \in \Z^m, l,uZnl,u \in \Z^n, and f:ZnZf: \Z^n \rightarrow \Z is a separable convex objective function. The problem o ...
EPFL2020
Afficher plus
Personnes associées (2)
Concepts associés (11)
Polyèdre quasi régulier
Un polyèdre dont les faces sont des polygones réguliers, qui est transitif sur ses sommets, et qui est transitif sur ses arêtes, est dit quasi régulier. Un polyèdre quasi régulier peut avoir des faces de deux sortes seulement, et celles-ci doivent alterner autour de chaque sommet. Pour certains polyèdres quasi réguliers : on utilise un symbole de Schläfli vertical pour représenter le polyèdre quasi régulier combinant les faces du polyèdre régulier {p,q} et celles du dual régulier {q,p} : leur noyau commun.
Polyèdre étoilé
En géométrie, le terme polyèdre étoilé ne semble pas avoir été défini proprement, même si l'objet est pensé dans le sens commun. On peut dire qu'un polyèdre étoilé est un polyèdre qui possède une certaine qualité répétitive de non-convexité lui donnant l'aspect d'une étoile. Il existe deux espèces générales de polyèdres étoilés : Les polyèdres qui s'auto-intersectent d'une manière répétitive. Les polyèdres concaves d'une sorte particulière qui alternent les parties concaves et convexes ou les sommets de selle d'une manière répétitive.
Composé polyédrique
Un composé polyédrique est un polyèdre qui est lui-même composé de plusieurs autres polyèdres partageant un centre commun, l'analogue tridimensionnel des tels que l'hexagramme. Les sommets voisins d'un composé peuvent être connectés pour former un polyèdre convexe appelé l'enveloppe convexe. Le composé est un facettage de l'enveloppe convexe. Un autre polyèdre convexe est formé par le petit espace central commun à tous les membres du composé. Ce polyèdre peut être considéré comme le noyau pour un ensemble de stellations incluant ce composé.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.