Summary
Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century. Cadmium sulfide can be prepared by the precipitation from soluble cadmium(II) salts with sulfide ion. This reaction has been used for gravimetric analysis and qualitative inorganic analysis.The preparative route and the subsequent treatment of the product, affects the polymorphic form that is produced (i.e., cubic vs hexagonal). It has been asserted that chemical precipitation methods result in the cubic zincblende form. Pigment production usually involves the precipitation of CdS, the washing of the solid precipitate to remove soluble cadmium salts followed by calcination (roasting) to convert it to the hexagonal form followed by milling to produce a powder. When cadmium sulfide selenides are required the CdSe is co-precipitated with CdS and the cadmium sulfoselenide is created during the calcination step. Cadmium sulfide is sometimes associated with sulfate reducing bacteria. Special methods are used to produce films of CdS as components in some photoresistors and solar cells. In the chemical bath deposition method, thin films of CdS have been prepared using thiourea as the source of sulfide anions and an ammonium buffer solution to control pH: Cd2+ + H2O + (NH2)2CS + 2 NH3 → CdS + (NH2)2CO + 2 NH4+ Cadmium sulfide can be produced using metalorganic vapour phase epitaxy and MOCVD techniques by the reaction of dimethylcadmium with diethyl sulfide: Cd(CH3)2 + Et2S → CdS + CH3CH3 + C4H10 Other methods to produce films of CdS include Sol–gel techniques Sputtering Electrochemical deposition Spraying with precursor cadmium salt, sulfur compound and dopant Screen printing using a slurry containing dispersed CdS Cadmium sulfide can be dissolved in acids.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MSE-484: Properties of semiconductors and related nanostructures
This course explains the origin of optical and electrical properties of semiconductors. The course elaborates how they change when the semiconductors are reduced to sizes of few nanometers. The course
MICRO-566: Large-area electronics: devices and materials
Introduction to the physical concepts involved in the description of optical and electronic transport properties of thin-film semiconductor materials found in many large-area applications (solar cells
Related lectures (23)
Optical Detectors: Photoconductors
Explains the operation and characteristics of photoconductors, emphasizing the trade-offs between sensitivity and speed.
Data Journalism: Techniques and Examples
Delves into the fundamentals of data journalism and showcases its impact through real-world examples from The Pudding and The Guardian.
Graphene: Quantum Properties and Nanoribbons
Explores graphene's quantum conductance, special electronic properties, nanoribbon fabrication, and edge effects.
Show more
Related publications (39)
Related concepts (16)
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Zinc sulfide
Zinc sulfide (or zinc sulphide) is an inorganic compound with the chemical formula of ZnS. This is the main form of zinc found in nature, where it mainly occurs as the mineral sphalerite. Although this mineral is usually black because of various impurities, the pure material is white, and it is widely used as a pigment. In its dense synthetic form, zinc sulfide can be transparent, and it is used as a window for visible optics and infrared optics. ZnS exists in two main crystalline forms.
Cadmium selenide
Cadmium selenide is an inorganic compound with the formula CdSe. It is a black to red-black solid that is classified as a II-VI semiconductor of the n-type. It is a pigment but applications are declining because of environmental concerns Three crystalline forms of CdSe are known which follow the structures of: wurtzite (hexagonal), sphalerite (cubic) and rock-salt (cubic). The sphalerite CdSe structure is unstable and converts to the wurtzite form upon moderate heating.
Show more