Concept

Arrangement of hyperplanes

Summary
In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set A of hyperplanes in a linear, affine, or projective space S. Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties of the complement, M(A), which is the set that remains when the hyperplanes are removed from the whole space. One may ask how these properties are related to the arrangement and its intersection semilattice. The intersection semilattice of A, written L(A), is the set of all subspaces that are obtained by intersecting some of the hyperplanes; among these subspaces are S itself, all the individual hyperplanes, all intersections of pairs of hyperplanes, etc. (excluding, in the affine case, the empty set). These intersection subspaces of A are also called the flats of A. The intersection semilattice L(A) is partially ordered by reverse inclusion. If the whole space S is 2-dimensional, the hyperplanes are lines; such an arrangement is often called an arrangement of lines. Historically, real arrangements of lines were the first arrangements investigated. If S is 3-dimensional one has an arrangement of planes. The intersection semilattice L(A) is a meet semilattice and more specifically is a geometric semilattice. If the arrangement is linear or projective, or if the intersection of all hyperplanes is nonempty, the intersection lattice is a geometric lattice. (This is why the semilattice must be ordered by reverse inclusion—rather than by inclusion, which might seem more natural but would not yield a geometric (semi)lattice.) When L(A) is a lattice, the matroid of A, written M(A), has A for its ground set and has rank function r(S) := codim(I), where S is any subset of A and I is the intersection of the hyperplanes in S. In general, when L(A) is a semilattice, there is an analogous matroid-like structure called a semimatroid, which is a generalization of a matroid (and has the same relationship to the intersection semilattice as does the matroid to the lattice in the lattice case), but is not a matroid if L(A) is not a lattice.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Support Vector Machines: Linear Separability
Explores linear separability in support vector machines, focusing on hyperplane separation and margin optimization.
Eigenvalues and Similar Matrices
Introduces eigenvalues, eigenvectors, and similar matrices, emphasizing diagonalization and geometric interpretations.
Related publications (5)
Related concepts (4)
Flat (geometry)
In geometry, a flat or Euclidean subspace is a subset of a Euclidean space that is itself a Euclidean space (of lower dimension). The flats in two-dimensional space are points and lines, and the flats in three-dimensional space are points, lines, and planes. In a n-dimensional space, there are flats of every dimension from 0 to n − 1; flats of dimension n − 1 are called hyperplanes. Flats are the affine subspaces of Euclidean spaces, which means that they are similar to linear subspaces, except that they need not pass through the origin.
Arrangement of lines
In geometry, an arrangement of lines is the subdivision of the plane formed by a collection of lines. Problems of counting the features of arrangements have been studied in discrete geometry, and computational geometers have found algorithms for the efficient construction of arrangements. Intuitively, any finite set of lines in the plane cuts the plane into two-dimensional polygons (cells), one-dimensional line segments or rays, and zero-dimensional crossing points.
Discrete geometry
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.
Show more