Summary
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observations - including gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seen - imply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution. The primary evidence for dark matter comes from calculations showing that many galaxies would behave quite differently if they did not contain a large amount of unseen matter. Some galaxies would not have formed at all and others would not move as they currently do. Other lines of evidence include observations in gravitational lensing and the cosmic microwave background, along with astronomical observations of the observable universe's current structure, the formation and evolution of galaxies, mass location during galactic collisions, and the motion of galaxies within galaxy clusters. In the standard Lambda-CDM model of cosmology, the total mass–energy content of the universe contains 5% ordinary matter, 26.8% dark matter, and 68.2% of a form of energy known as dark energy. Thus, dark matter constitutes 85% of the total mass, while dark energy and dark matter constitute 95% of the total mass–energy content. No one has directly observed dark matter yet, primarily because it doesn't usually interact with ordinary baryonic matter and radiation except through gravity. Dark matter is thought to be non-baryonic. It may be composed of some as-yet-undiscovered subatomic particles. A leading candidate for dark matter has been a new kind of elementary particle that has not yet been discovered, such as weakly interacting massive particles (WIMPs) or axions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
PHYS-741: Gauge Theories and the Standard Model
The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-402: Astrophysics V : observational cosmology
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen from the point of view of observations.
Show more
Related lectures (142)
Gravitational Lensing: Exploring Micro-Lensing Phenomenon
Explores gravitational micro-lensing effects, strong and weak lensing, multiple images, and critical lines.
Quantum Physics: Wave-Particle Duality
Explores wave-particle duality in quantum physics, covering interference, matter waves, and energy quantization.
Gravitational Lensing: Basics and Applications
Explores the basics of gravitational lensing, clarifying common misconceptions and providing explicit observational tests.
Show more
Related publications (653)
Related concepts (44)
Universe
The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. According to this theory, space and time emerged together 13.787billion years ago, and the universe has been expanding ever since the Big Bang. While the spatial size of the entire universe is unknown, it is possible to measure the size of the observable universe, which is approximately 93 billion light-years in diameter at the present day.
Bose–Einstein condensate
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.67 °F). Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum mechanical phenomena, particularly wavefunction interference, become apparent macroscopically.
General relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime.
Show more
Related MOOCs (5)
The Radio Sky II: Observational Radio Astronomy
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Introduction to Astrophysics
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Show more