Concept

Serge Lang

Summary
Serge Lang (lɑ̃ɡ; May 19, 1927 – September 12, 2005) was a French-American mathematician and activist who taught at Yale University for most of his career. He is known for his work in number theory and for his mathematics textbooks, including the influential Algebra. He received the Frank Nelson Cole Prize in 1960 and was a member of the Bourbaki group. As an activist, Lang campaigned against the Vietnam War, and also successfully fought against the nomination of the political scientist Samuel P. Huntington to the National Academies of Science. Later in his life, Lang was an HIV/AIDS denialist. He claimed that HIV had not been proven to cause AIDS and protested Yale's research into HIV/AIDS. Lang was born in Saint-Germain-en-Laye, close to Paris, in 1927. He had a twin brother who became a basketball coach and a sister who became an actress. Lang moved with his family to California as a teenager, where he graduated in 1943 from Beverly Hills High School. He subsequently graduated with an AB from the California Institute of Technology in 1946. He then received a PhD in mathematics from Princeton University in 1951. He held faculty positions at the University of Chicago, Columbia University (from 1955, leaving in 1971 in a dispute), and Yale University. Lang studied at Princeton University, writing his thesis titled "On quasi algebraic closure" under the supervision of Emil Artin, and then worked on the geometric analogues of class field theory and diophantine geometry. Later he moved into diophantine approximation and transcendental number theory, proving the Schneider–Lang theorem. A break in research while he was involved in trying to meet 1960s student activism halfway caused him (by his own description) difficulties in picking up the threads afterwards. He wrote on modular forms and modular units, the idea of a 'distribution' on a profinite group, and value distribution theory. He made a number of conjectures in diophantine geometry: Mordell–Lang conjecture, Bombieri–Lang conjecture, Lang–Trotter conjecture, and the Lang conjecture on analytically hyperbolic varieties.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (4)
Transcendental number theory
Transcendental number theory is a branch of number theory that investigates transcendental numbers (numbers that are not solutions of any polynomial equation with rational coefficients), in both qualitative and quantitative ways. Transcendental number The fundamental theorem of algebra tells us that if we have a non-constant polynomial with rational coefficients (or equivalently, by clearing denominators, with integer coefficients) then that polynomial will have a root in the complex numbers.
Glossary of arithmetic and diophantine geometry
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality. Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields.
Diophantine geometry
In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry. Four theorems in Diophantine geometry which are of fundamental importance include: Mordell–Weil theorem Roth's theorem Siegel's theorem Faltings's theorem Serge Lang published a book Diophantine Geometry in the area in 1962, and by this book he coined the term "Diophantine Geometry".
Show more