En théorie analytique des nombres, la formule de fraction continue d'Euler est une identité reliant les séries aux fractions continues généralisées, publiée par Leonhard Euler en 1748 et utile dans l'étude du problème de convergence général pour les fractions continues à coefficients complexes. Euler a établi une identité dont la transcription est, en notation de Pringsheim : cette égalité signifiant seulement que les sommes partielles de la série de gauche sont égales aux réduites de la fraction continue de droite, autrement dit : Il trouve simplement cette formule par une analyse rétrograde des relations fondamentales sur les réduites. Par changement de notations et passage à la limite, on en déduit : pour toutes suites de nombres complexes y non nuls et x tels que la série de gauche converge. Ceci permet donc, après avoir mis une série convergente sous la forme adéquate, de la transformer en fraction continue. De plus, si les complexes x et y sont des fonctions d'une variable z et si la convergence de la série est uniforme par rapport à z, il en est naturellement de même pour la convergence de la fraction continue. Cette formule a de nombreux corollaires, comme : en prenant tous les y égaux à 1 : en posant x = 1, y = a et pour j > 0, x = az et y = aa...a : en posant x = 1, y = u et pour j > 0, x = uZ et y = uu...u : L'exponentielle complexe est une fonction entière donc son développement en série entière converge uniformément sur toute partie bornée du plan complexe : Il en est donc de même pour la fraction continue (obtenue par le deuxième corollaire ci-dessus) : On en déduit par exemple : donc la dernière égalité résultant d'une transformation usuelle. Le développement en série entière de la détermination principale du logarithme complexe appliqué à 1 + z est Il converge uniformément quand z parcourt le disque unité fermé privé d'un voisinage arbitrairement petit de −1.
Olivier Schneider, Yiming Li, Mingkui Wang, Chao Wang, Tagir Aushev, Yixing Chen, Sun Hee Kim, Donghyun Kim, Lei Li
Olivier Schneider, Yiming Li, Mingkui Wang, Chao Wang, Tagir Aushev, Sun Hee Kim, Jun Yong Kim, Ji Hyun Kim, Donghyun Kim, Xiao Wang, Lei Li
Olivier Schneider, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, Luca Pescatore, François Fleuret, Elena Graverini, Chitsanu Khurewathanakul, Renato Quagliani, Federico Betti, Aravindhan Venkateswaran, Vitalii Lisovskyi, Jian Wang, Mingkui Wang, Zhirui Xu, Yi Zhang, Lei Zhang, Jessica Prisciandaro, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Marc-Olivier Bettler, Greig Alan Cowan, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Cédric Potterat, Liang Sun, Mirco Dorigo, Jean Wicht, Xiaoxue Han, Sebastiana Gianì, Liupan An, Federico Leo Redi, Plamen Hristov Hopchev, Thibaud Humair, Maxime Schubiger, Hang Yin, Guido Andreassi, Violaine Bellée, Maria Vieites Diaz, Olivier Göran Girard, Axel Kuonen, Preema Rennee Pais, Maria Elena Stramaglia, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Dipanwita Dutta, Zheng Wang, Yi Wang, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Adam Davis, Yu Zheng, Anton Petrov, Maxim Borisyak, Feng Jiang, Zhipeng Tang