We present the results of the first Dalitz plot analysis of the decay D-0 -> K-pi(+)eta. The analysis is performed on a data set corresponding to an integrated luminosity of 953 fb(-1) collected by the Belle detector at the asymmetric-energy e(+)e(-) KEKB collider. The Dalitz plot is well described by a combination of the six resonant decay channels (K) over bar*(892)(0)eta, K(-)a(0)(980)(+), K(-)a(2)(1320)+, K(-)a(2)(1410)(0)eta, K*(1680)(-)pi(+) and K-2*(1980)(-)pi(+), together with K pi and eta K eta S-wave components. The decays K* (1680)(-)-> K-eta and K-2* (1980)--> K-eta are observed for the first time. We measure ratio of the branching fractions, B(D-0 -> K-pi(+)eta)/B(D-0 -> K-pi(+)) = 0.500 +/- 0.002(stat) +/- 0.020(syst) +/- 0.003(B-PDG). Using the Dalitz fit result, the ratio B(K*(1680)-> K eta)/B(K*(1680)-> K pi) is measured to be 0.11 +/- 0.002(stat)(-0.04)(+0.06)(syst) +/- 0.04(B-PDG); this is much lower than the theoretical expectations (approximate to 1) made under the assumption that K*(1680) is a pure 1(3)D(1) state. The product branching fraction B(D-0 -> [K-2*(1980)- -> K-eta]pi(+)) = (2.2-1.9+1.7) x 10(-4) is determined. In addition, the pi eta' contribution to the a(0)(980)(+/-) resonance shape is confirmed with 10.1 sigma statistical significance using the three-channel Flatte model. We also measure B(D-0 -> (K) over bar*(892)(0)eta) = (1.41(-0.12)(+0.13))%. This is consistant with, and more precise than, the current world average (1.02 +/- 0.30)%, deviates with a significance of more than 3 sigma from the theoretical predictions of (0.51-0.92)%.
Matthias Finger, Konstantin Androsov, Qian Wang, Jan Steggemann, Yiming Li, Anna Mascellani, Varun Sharma, Xin Chen, Rakesh Chawla, Matteo Galli
Matthias Finger, Konstantin Androsov, Qian Wang, Jan Steggemann, Yiming Li, Anna Mascellani, Varun Sharma, Xin Chen, Rakesh Chawla, Matteo Galli