Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements. This would allow algorithms of greater circuit depth.
Classical error correction employs redundancy. The simplest albeit inefficient approach is the repetition code. The idea is to store the information multiple times, and—if these copies are later found to disagree—take a majority vote; e.g. suppose we copy a bit in the one state three times. Suppose further that a noisy error corrupts the three-bit state so that one of the copied bits is equal to zero but the other two are equal to one. Assuming that noisy errors are independent and occur with some sufficiently low probability p, it is most likely that the error is a single-bit error and the transmitted message is three ones. It is possible that a double-bit error occurs and the transmitted message is equal to three zeros, but this outcome is less likely than the above outcome. In this example, the logical information was a single bit in the one state, the physical information are the three copied bits, and determining what logical state is encoded in the physical state is called decoding. Similar to classical error correction, QEC codes do not always correctly decode logical qubits, but their use reduces the effect of noise.
Copying quantum information is not possible due to the no-cloning theorem. This theorem seems to present an obstacle to formulating a theory of quantum error correction. But it is possible to spread the (logical) information of one qubit onto a highly entangled state of several (physical) qubits. Peter Shor first discovered this method of formulating a quantum error correcting code by storing the information of one qubit onto a highly entangled state of nine qubits.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explains quantum teleportation, demonstrating the successful transfer of quantum information using classical communication channels and various quantum operations.
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
A broad view of the diverse aspects of the field is provided: quantum physics, communication, quantum computation, simulation of physical systems, physics of qubit platforms, hardware technologies. St
In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet. More formally, quantum channels are completely positive (CP) trace-preserving maps between spaces of operators. In other words, a quantum channel is just a quantum operation viewed not merely as the reduced dynamics of a system but as a pipeline intended to carry quantum information.
A trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap (interacting through the Coulomb force).
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates.
Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
EPFL2024
, , , , , ,
Superconducting qubits are among the most advanced candidates for achieving fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes, the origin of the loss mechanism for state-of-the-art qubits is still subject to i ...
We introduce a model-independent method for the efficient simulation of low-entropy systems, whose dynamics can be accurately described with a limited number of states. Our method leverages the time-dependent variational principle to efficiently integrate ...