Résumé
Les codes quantiques sont l'équivalent quantique des codes correcteurs. La théorie des codes quantiques est donc une branche de l'information quantique qui s'applique à protéger l'information quantique des effets de la décohérence. La correction d'erreur quantique est un élément essentiel du calcul tolérant aux fautes qui doit gérer non seulement les erreurs dans l'information stockée, mais aussi dans l'application des portes quantiques, la préparation de nouveaux états ainsi que dans les opérations de mesure. De manière analogue aux codes correcteurs classiques utilisant la redondance pour protéger l'information, les codes quantiques utilisent l'intrication pour délocaliser sur plusieurs systèmes physiques l'information encodée. Étant donné un système physique dont l'espace des états est , un sous-espace est appelé code quantique pour l'ensemble d'erreurs , s'il existe une opération quantique , dite de correction ou de décodage, telle que pour tout , . De manière opérationnelle, on peut utiliser la condition suivante: un code corrige les erreurs si et seulement si où et forment une base orthonormée de . Deux points importants sont à noter. Tout d'abord deux états orthogonaux le sont toujours après l'application d'une erreur. Ensuite, le préfacteur est indépendant des choix de mots codes et . Le qubit, analogue quantique du bit classique, est souvent utilisé comme unité fondamentale de l'information quantique. C'est pourquoi on note souvent les propriétés d'un code [[n,k,d]], où n est le nombre de qubits physiques, k, le nombre de qubits encodés et d, la distance du code. La distance du code correspond au nombre minimal de qubits devant être affectés pour passer d'un état encodé à un autre. En 1996, deux groupes de recherche découvrent indépendamment d'importants codes quantiques. La classe de codes CSS a été découverte par et Shor, puis par . Les codes stabilisateurs les ont maintenant remplacés. Ceux-ci ont été développés, encore une fois, indépendamment par Calderbank, Rains, Shor et Sloane, puis .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (19)
Quantum channel
In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet. More formally, quantum channels are completely positive (CP) trace-preserving maps between spaces of operators. In other words, a quantum channel is just a quantum operation viewed not merely as the reduced dynamics of a system but as a pipeline intended to carry quantum information.
Code quantique
Les codes quantiques sont l'équivalent quantique des codes correcteurs. La théorie des codes quantiques est donc une branche de l'information quantique qui s'applique à protéger l'information quantique des effets de la décohérence. La correction d'erreur quantique est un élément essentiel du calcul tolérant aux fautes qui doit gérer non seulement les erreurs dans l'information stockée, mais aussi dans l'application des portes quantiques, la préparation de nouveaux états ainsi que dans les opérations de mesure.
Trapped ion quantum computer
A trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap (interacting through the Coulomb force).
Afficher plus
Cours associés (17)
CS-308: Quantum computation
The course introduces teh paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
PHYS-641: Quantum Computing
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
COM-611: Quantum Information Theory and Computation
Today one is able to manipulate matter at the nanoscale were quantum behavior becomes important and possibly information processing will have to take into account laws of quantum physics. We introduce
Afficher plus