Les codes quantiques sont l'équivalent quantique des codes correcteurs. La théorie des codes quantiques est donc une branche de l'information quantique qui s'applique à protéger l'information quantique des effets de la décohérence. La correction d'erreur quantique est un élément essentiel du calcul tolérant aux fautes qui doit gérer non seulement les erreurs dans l'information stockée, mais aussi dans l'application des portes quantiques, la préparation de nouveaux états ainsi que dans les opérations de mesure. De manière analogue aux codes correcteurs classiques utilisant la redondance pour protéger l'information, les codes quantiques utilisent l'intrication pour délocaliser sur plusieurs systèmes physiques l'information encodée. Étant donné un système physique dont l'espace des états est , un sous-espace est appelé code quantique pour l'ensemble d'erreurs , s'il existe une opération quantique , dite de correction ou de décodage, telle que pour tout , . De manière opérationnelle, on peut utiliser la condition suivante: un code corrige les erreurs si et seulement si où et forment une base orthonormée de . Deux points importants sont à noter. Tout d'abord deux états orthogonaux le sont toujours après l'application d'une erreur. Ensuite, le préfacteur est indépendant des choix de mots codes et . Le qubit, analogue quantique du bit classique, est souvent utilisé comme unité fondamentale de l'information quantique. C'est pourquoi on note souvent les propriétés d'un code [[n,k,d]], où n est le nombre de qubits physiques, k, le nombre de qubits encodés et d, la distance du code. La distance du code correspond au nombre minimal de qubits devant être affectés pour passer d'un état encodé à un autre. En 1996, deux groupes de recherche découvrent indépendamment d'importants codes quantiques. La classe de codes CSS a été découverte par et Shor, puis par . Les codes stabilisateurs les ont maintenant remplacés. Ceux-ci ont été développés, encore une fois, indépendamment par Calderbank, Rains, Shor et Sloane, puis .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.