Summary
In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function. There are several DAC architectures; the suitability of a DAC for a particular application is determined by figures of merit including: resolution, maximum sampling frequency and others. Digital-to-analog conversion can degrade a signal, so a DAC should be specified that has insignificant errors in terms of the application. DACs are commonly used in music players to convert digital data streams into analog audio signals. They are also used in televisions and mobile phones to convert digital video data into analog video signals. These two applications use DACs at opposite ends of the frequency/resolution trade-off. The audio DAC is a low-frequency, high-resolution type while the video DAC is a high-frequency low- to medium-resolution type. Due to the complexity and the need for precisely matched components, all but the most specialized DACs are implemented as integrated circuits (ICs). These typically take the form of metal–oxide–semiconductor (MOS) mixed-signal integrated circuit chips that integrate both analog and digital circuits. Discrete DACs (circuits constructed from multiple discrete electronic components instead of a packaged IC) would typically be extremely high-speed low-resolution power-hungry types, as used in military radar systems. Very high-speed test equipment, especially sampling oscilloscopes, may also use discrete DACs. A DAC converts an abstract finite-precision number (usually a fixed-point binary number) into a physical quantity (e.g., a voltage or a pressure). In particular, DACs are often used to convert finite-precision time series data to a continually varying physical signal. A DAC can reconstruct the original signal from the sampled data provided that its bandwidth meets the requirements of the Nyquist–Shannon sampling theorem (i.e., a baseband signal with bandwidth less than the Nyquist frequency).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.