Objective-collapse theories, also known as models of spontaneous wave function collapse or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other theories called interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the wave function describing the state of a quantum system is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.
In collapse theories, the Schrödinger equation is supplemented with additional nonlinear and stochastic terms (spontaneous collapses) which localize the wave function in space. The resulting dynamics is such that for microscopic isolated systems, the new terms have a negligible effect; therefore, the usual quantum properties are recovered, apart from very tiny deviations. Such deviations can potentially be detected in dedicated experiments, and efforts are increasing worldwide towards testing them.
An inbuilt amplification mechanism makes sure that for macroscopic systems consisting of many particles, the collapse becomes stronger than the quantum dynamics. Then their wave function is always well-localized in space, so well-localized that it behaves, for all practical purposes, like a point moving in space according to Newton's laws.
In this sense, collapse models provide a unified description of microscopic and macroscopic systems, avoiding the conceptual problems associated to measurements in quantum theory.
The most well-known examples of such theories are:
Ghirardi–Rimini–Weber (GRW) model
Continuous spontaneous localization (CSL) model
Diósi–Penrose (DP) model
Collapse theories stand in opposition to many-worlds interpretation theories, in that they hold that a process of wave function collapse curtails the branching of the wave function and removes unobserved behaviour.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Quantitative decision making based on life-cycle considerations that incorporate direct losses, seismic risk assessment, and collapse. Seismic hazard analysis, response simulation, damage and loss est
To introduce several advanced topics in quantum physics, including
semiclassical approximation, path integral, scattering theory, and
relativistic quantum mechanics
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Quantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit.
In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key set of questions that each interpretation must answer. The wave function in quantum mechanics evolves deterministically according to the Schrödinger equation as a linear superposition of different states. However, actual measurements always find the physical system in a definite state.
In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly divided into three areas: interpretations of quantum mechanics: mainly concerning issues with how to formulate an adequate response to the measurement problem and understand what the theory says about reality.
We study the settings where we are given a separable objective function of n variables defined in a given box of integers. We show that in many cases we can replace the given objective function by a new function with a much smaller domain. Our results appl ...
Amsterdam2023
, , ,
The current study sought to objectively evaluate cybersickness by utilizing Electrogastrogram (EGG) physiological data in relation to three different navigation axes: Translational movement along the longitudinal and lateral axes, and rotation along the ve ...
The researchers used a machine-learning classification approach to better understand neurological features associated with periods of wayfinding uncertainty. The participants (n = 30) were asked to complete wayfinding tasks of varying difficulty in a virtu ...