A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecular excitations, it employs relativistic electrons as a gain medium. Radiation is generated by a bunch of electrons passing through a magnetic structure (called undulator or wiggler). In an FEL, this radiation is further amplified as the radiation re-interacts with the electron bunch such that the electrons start to emit coherently, thus allowing an exponential increase in overall radiation intensity.
As electron kinetic energy and undulator parameters can be adapted as desired, free-electron lasers are tunable and can be built for a wider frequency range than any other type of laser, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, ultraviolet, and X-ray.
The first free-electron laser was developed by John Madey in 1971 at Stanford University using technology developed by Hans Motz and his coworkers, who built an undulator at Stanford in 1953, using the wiggler magnetic configuration. Madey used a 43 MeV electron beam and 5 m long wiggler to amplify a signal.
To create an FEL, a beam of electrons is accelerated to almost the speed of light. The beam passes through a periodic arrangement of magnets with alternating poles across the beam path, which creates a side to side magnetic field. The direction of the beam is called the longitudinal direction, while the direction across the beam path is called transverse. This array of magnets is called an undulator or a wiggler, because the Lorentz force of the field forces the electrons in the beam to wiggle transversely, traveling along a sinusoidal path about the axis of the undulator.
The transverse acceleration of the electrons across this path results in the release of photons, which are monochromatic but still incoherent, because the electromagnetic waves from randomly distributed electrons interfere constructively and destructively in time.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices (undulators or wigglers) in storage rings and free electron lasers.
A traveling-wave tube (TWT, pronounced "twit") or traveling-wave tube amplifier (TWTA, pronounced "tweeta") is a specialized vacuum tube that is used in electronics to amplify radio frequency (RF) signals in the microwave range. It was invented by Andrei Haeff around 1933 as a graduate student at Caltech, and its present form was invented by Rudolf Kompfner in 1942-43. The TWT belongs to a category of "linear beam" tubes, such as the klystron, in which the radio wave is amplified by absorbing power from a beam of electrons as it passes down the tube.
This course introduces the basic principles of lasers to then focus on the latest developments in ultrafast radiation sources, including X-ray and gamma-ray sources, attosecond pulses generation, free
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
Particle accelerators are the drivers for large-scale research infrastructures for particle physics but also for many branches of condensed matter research. The types of accelerator-driven research infrastructures include particle colliders, neutron, muon ...
Isolated attosecond pulses from an X-ray free-electron laser are in high demand for attosecond science, which enables the probing of electron dynamics by X-ray nonlinear spectroscopy and single-particle imaging.The aim of this thesis is to simulate attosec ...
Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider (LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when positively charged particles are passing through and cause unwanted effects in b ...