In mathematics, 1 − 2 + 3 − 4 + ··· is an infinite series whose terms are the successive positive integers, given alternating signs. Using sigma summation notation the sum of the first m terms of the series can be expressed as The infinite series diverges, meaning that its sequence of partial sums, (1, −1, 2, −2, 3, ...), does not tend towards any finite limit. Nonetheless, in the mid-18th century, Leonhard Euler wrote what he admitted to be a paradoxical equation: A rigorous explanation of this equation would not arrive until much later. Starting in 1890, Ernesto Cesàro, Émile Borel and others investigated well-defined methods to assign generalized sums to divergent series—including new interpretations of Euler's attempts. Many of these summability methods easily assign to 1 − 2 + 3 − 4 + ... a "value" of 1/4. Cesàro summation is one of the few methods that do not sum 1 − 2 + 3 − 4 + ..., so the series is an example where a slightly stronger method, such as Abel summation, is required. The series 1 − 2 + 3 − 4 + ... is closely related to Grandi's series 1 − 1 + 1 − 1 + .... Euler treated these two as special cases of the more general sequence 1 − 2n + 3n − 4n + ..., where n = 1 and n = 0 respectively. This line of research extended his work on the Basel problem and leading towards the functional equations of what are now known as the Dirichlet eta function and the Riemann zeta function. The series' terms (1, −2, 3, −4, ...) do not approach 0; therefore 1 − 2 + 3 − 4 + ... diverges by the term test. Divergence can also be shown directly from the definition: an infinite series converges if and only if the sequence of partial sums converges to limit, in which case that limit is the value of the infinite series. The partial sums of 1 − 2 + 3 − 4 + ... are: The sequence of partial sums shows that the series does not converge to a particular number: for any proposed limit x, there exists a point beyond which the subsequent partial sums are all outside the interval [x−1, x+1]), so 1 − 2 + 3 − 4 + ... diverges.
Pierino Lestuzzi, Yves Sylvain Gilles Reuland, Lorenzo Diana, Stefano Podesta
Athanasios Nenes, Yi Wang, Hui Wang, Qianyu Zhao
Olivier Sauter, Ambrogio Fasoli, Basil Duval, Stefano Coda, Jonathan Graves, Yves Martin, Duccio Testa, Patrick Blanchard, Alessandro Pau, Cristian Sommariva, Henri Weisen, Richard Pitts, Yann Camenen, Jan Horacek, Javier García Hernández, Marco Wischmeier, Nicola Vianello, Mikhail Maslov, Federico Nespoli, Yao Zhou, David Pfefferlé, Davide Galassi, Antonio José Pereira de Figueiredo, Jonathan Marc Philippe Faustin, Liang Yao, Dalziel Joseph Wilson, Hamish William Patten, Samuel Lanthaler, Bernhard Sieglin, Otto Asunta