Windows Vista (formerly codenamed Windows "Longhorn") has many significant new features compared with previous Microsoft Windows versions, covering most aspects of the operating system.
In addition to the new user interface, security capabilities, and developer technologies, several major components of the core operating system were redesigned, most notably the audio, print, display, and networking subsystems; while the results of this work will be visible to software developers, end-users will only see what appear to be evolutionary changes in the user interface.
As part of the redesign of the networking architecture, IPv6 has been incorporated into the operating system, and a number of performance improvements have been introduced, such as TCP window scaling. Prior versions of Windows typically needed third-party wireless networking software to work properly; this is no longer the case with Windows Vista, as it includes comprehensive wireless networking support.
For graphics, Windows Vista introduces a new as well as major revisions to Direct3D. The new display driver model facilitates the new Desktop Window Manager, which provides the tearing-free desktop and special effects that are the cornerstones of the Windows Aero graphical user interface. The new display driver model is also able to offload rudimentary tasks to the GPU, allow users to install drivers without requiring a system reboot, and seamlessly recover from rare driver errors due to illegal application behavior.
At the core of the operating system, many improvements have been made to the memory manager, process scheduler, heap manager, and I/O scheduler. A Kernel Transaction Manager has been implemented that can be used by data persistence services to enable atomic transactions. The service is being used to give applications the ability to work with the file system and registry using atomic transaction operations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Windows NT is a proprietary graphical operating system produced by Microsoft, the first version of which was released on July 27, 1993. It is a processor-independent, multiprocessing and multi-user operating system. The first version of Windows NT was Windows NT 3.1 and was produced for workstations and server computers. It was a commercially focused operating system intended to complement consumer versions of Windows that were based on MS-DOS (including Windows 1.0 through Windows 3.1x).
Kernel Transaction Manager (KTM) is a component of the Windows operating system kernel in Windows Vista and Windows Server 2008 that enables applications to use atomic transactions on resources by making them available as kernel objects. The transaction engine, which operates in kernel mode, allows for transactions on both kernel mode and user mode resources, as well as among distributed resources. The Kernel Transaction Manager intends to make it easy for application developers to do much error recovery, virtually transparently, with KTM acting as a transaction manager that transaction clients can plug into.
User Account Control (UAC) is a mandatory access control enforcement feature introduced with Microsoft's Windows Vista and Windows Server 2008 operating systems, with a more relaxed version also present in Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows 11. It aims to improve the security of Microsoft Windows by limiting application software to standard user privileges until an administrator authorises an increase or elevation.
The performance of HDFS is critical to big data software stacks and has been at the forefront of recent efforts from the industry and the open source community. A key problem is the lack of flexibility in how data replication is performed. To address this ...
Simulations of the electrical activity of networks of morphologically-detailed neuron models allow for a better understanding of the brain.
Short time to solution is critical in order to study long biological processes such as synaptic plasticity and learn ...
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of prod ...