Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of productive engagement was developed by utilizing multimodal data of 32 dyads and learning profiles, namely, Expressive Explorers (EE), Calm Tinkerers (CT), and Silent Wanderers (SW) were identified which categorize learners according to their learning gain. Within the same framework, a PE score was constructed in a non-supervised manner for real-time evaluation. Here, we use these profiles and the PE score within an AutoML deep learning framework to personalize PE models. We investigate two approaches for this purpose: (1) Single-task Deep Neural Architecture Search (ST-NAS), and (2) Multitask NAS (MT-NAS). In the former approach, personalized models for each learner profile are learned from multimodal features and compared to non-personalized models. In the MT-NAS approach, we investigate whether jointly classifying the learners' profiles with the engagement score through multi-task learning would serve as an implicit personalization of PE. Moreover, we compare the predictive power of two types of features: incremental and non-incremental features. Non-incremental features correspond to features computed from the participant's behaviours in fixed time windows. Incremental features are computed by accounting to the behaviour from the beginning of the learning activity till the time window where productive engagement is observed. Our experimental results show that (1) personalized models improve the recognition performance with respect to non-personalized models when training models for the gainer vs. non-gainer groups, (2) multitask NAS (implicit personalization) also outperforms non-personalized models, (3) the speech modality has high contribution towards prediction, and (4) non-incremental features outperform the incremental ones overall.
, , , , ,