Summary
Neuropeptides are chemical messengers made up of small chains of amino acids that are synthesized and released by neurons. Neuropeptides typically bind to G protein-coupled receptors (GPCRs) to modulate neural activity and other tissues like the gut, muscles, and heart. There are over 100 known neuropeptides, representing the largest and most diverse class of signaling molecules in the nervous system. Neuropeptides are synthesized from large precursor proteins which are cleaved and post-translationally processed then packaged into dense core vesicles. Neuropeptides are often co-released with other neuropeptides and neurotransmitters in a single neuron, yielding a multitude of effects. Once released, neuropeptides can diffuse widely to affect a broad range of targets. Neuropeptides are synthesized from large, inactive precursor proteins called prepropeptides. Prepropeptides contain sequences for a family of distinct peptides and often contain repeated copies of the same peptides, depending on the organism. In addition to the precursor peptide sequences, prepropeptides also contain a signal peptide, spacer peptides, and cleavage sites. The signal peptide sequence guides the protein to the secretory pathway, starting at the endoplasmic reticulum. The signal peptide sequence is removed in the endoplasmic reticulum, yielding a propeptide. The propeptide travels to the Golgi apparatus where it is proteolytically cleaved and processed into multiple peptides. Peptides are packaged into dense core vesicles, where further cleaving and processing, such as C-terminal amidation, can occur. Dense core vesicles are transported throughout the neuron and can release peptides at the synaptic cleft, cell body, and along the axon. Neuropeptides are released by dense core vesicles after depolarization of the cell. Compared to classical neurotransmitter signaling, neuropeptide signaling is more sensitive. Neuropeptide receptor affinity is in the nanomolar to micromolar range while neurotransmitter affinity is in the micromolar to millimolar range.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.