Summary
Neuropeptides are chemical messengers made up of small chains of amino acids that are synthesized and released by neurons. Neuropeptides typically bind to G protein-coupled receptors (GPCRs) to modulate neural activity and other tissues like the gut, muscles, and heart. There are over 100 known neuropeptides, representing the largest and most diverse class of signaling molecules in the nervous system. Neuropeptides are synthesized from large precursor proteins which are cleaved and post-translationally processed then packaged into dense core vesicles. Neuropeptides are often co-released with other neuropeptides and neurotransmitters in a single neuron, yielding a multitude of effects. Once released, neuropeptides can diffuse widely to affect a broad range of targets. Neuropeptides are synthesized from large, inactive precursor proteins called prepropeptides. Prepropeptides contain sequences for a family of distinct peptides and often contain repeated copies of the same peptides, depending on the organism. In addition to the precursor peptide sequences, prepropeptides also contain a signal peptide, spacer peptides, and cleavage sites. The signal peptide sequence guides the protein to the secretory pathway, starting at the endoplasmic reticulum. The signal peptide sequence is removed in the endoplasmic reticulum, yielding a propeptide. The propeptide travels to the Golgi apparatus where it is proteolytically cleaved and processed into multiple peptides. Peptides are packaged into dense core vesicles, where further cleaving and processing, such as C-terminal amidation, can occur. Dense core vesicles are transported throughout the neuron and can release peptides at the synaptic cleft, cell body, and along the axon. Neuropeptides are released by dense core vesicles after depolarization of the cell. Compared to classical neurotransmitter signaling, neuropeptide signaling is more sensitive. Neuropeptide receptor affinity is in the nanomolar to micromolar range while neurotransmitter affinity is in the micromolar to millimolar range.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
BIO-499: Neural circuits of motivated behaviors
Motivated behaviors fulfil the basic physiological needs of animals and enable their safety. In this course, you will learn about the neuronal circuits that detect potential dangers in the environment
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Related lectures (11)
Neurotransmitters: GABA and Glycine
Explores the classification and effects of GABA and Glycine neurotransmitters, including drug interactions.
Neurotransmitters Overview
Provides an overview of neurotransmitters, their roles in sleep, addiction, and LTP, and the study of addictive behaviors.
Peptide Therapeutics
Explores the development and advantages of peptide therapeutics, including conversion into peptidomimetics and solid phase peptide synthesis.
Show more
Related publications (34)
Related concepts (16)
Neuromodulation
Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic, G-protein coupled receptors (GPCRs) to initiate a second messenger signaling cascade that induces a broad, long-lasting signal. This modulation can last for hundreds of milliseconds to several minutes. Some of the effects of neuromodulators include: alter intrinsic firing activity, increase or decrease voltage-dependent currents, alter synaptic efficacy, increase bursting activity and reconfiguration of synaptic connectivity.
Arcuate nucleus
The arcuate nucleus of the hypothalamus (also known as ARH, ARC, or infundibular nucleus) is an aggregation of neurons in the mediobasal hypothalamus, adjacent to the third ventricle and the median eminence. The arcuate nucleus includes several important and diverse populations of neurons that help mediate different neuroendocrine and physiological functions, including neuroendocrine neurons, centrally projecting neurons, and astrocytes.
Agouti-related peptide
Agouti-related protein (AgRP), also called agouti-related peptide, is a neuropeptide produced in the brain by the AgRP/NPY neuron. It is synthesized in neuropeptide Y (NPY)-containing cell bodies located in the ventromedial part of the arcuate nucleus in the hypothalamus. AgRP is co-expressed with NPY and acts to increase appetite and decrease metabolism and energy expenditure. It is one of the most potent and long-lasting of appetite stimulators. In humans, the agouti-related peptide is encoded by the AGRP gene.
Show more