Concept

Magma (logiciel)

Magma is a computer algebra system designed to solve problems in algebra, number theory, geometry and combinatorics. It is named after the algebraic structure magma. It runs on Unix-like operating systems, as well as Windows. Magma is produced and distributed by the Computational Algebra Group within the School of Mathematics and Statistics at the University of Sydney. In late 2006, the book Discovering Mathematics with Magma was published by Springer as volume 19 of the Algorithms and Computations in Mathematics series. The Magma system is used extensively within pure mathematics. The Computational Algebra Group maintain a list of publications that cite Magma, and as of 2010 there are about 2600 citations, mostly in pure mathematics, but also including papers from areas as diverse as economics and geophysics. The predecessor of the Magma system was named Cayley (1982–1993), after Arthur Cayley. Magma was officially released in August 1993 (version 1.0). Version 2.0 of Magma was released in June 1996 and subsequent versions of 2.X have been released approximately once per year. In 2013, the Computational Algebra Group finalized an agreement with the Simons Foundation, whereby the Simons Foundation will underwrite all costs of providing Magma to all U.S. nonprofit, non-governmental scientific research or educational institutions. All students, researchers and faculty associated with a participating institution will be able to access Magma for free, through that institution. Group theory Magma includes permutation, matrix, finitely presented, soluble, abelian (finite or infinite), polycyclic, braid and straight-line program groups. Several databases of groups are also included. Number theory Magma contains asymptotically fast algorithms for all fundamental integer and polynomial operations, such as the Schönhage–Strassen algorithm for fast multiplication of integers and polynomials. Integer factorization algorithms include the Elliptic Curve Method, the Quadratic sieve and the Number field sieve.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.