Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A bolometer is a device for measuring radiant heat by means of a material having a temperature-dependent electrical resistance. It was invented in 1878 by the American astronomer Samuel Pierpont Langley. A bolometer consists of an absorptive element, such as a thin layer of metal, connected to a thermal reservoir (a body of constant temperature) through a thermal link. The result is that any radiation impinging on the absorptive element raises its temperature above that of the reservoir – the greater the absorbed power, the higher the temperature. The intrinsic thermal time constant, which sets the speed of the detector, is equal to the ratio of the heat capacity of the absorptive element to the thermal conductance between the absorptive element and the reservoir. The temperature change can be measured directly with an attached resistive thermometer, or the resistance of the absorptive element itself can be used as a thermometer. Metal bolometers usually work without cooling. They are produced from thin foils or metal films. Today, most bolometers use semiconductor or superconductor absorptive elements rather than metals. These devices can be operated at cryogenic temperatures, enabling significantly greater sensitivity. Bolometers are directly sensitive to the energy left inside the absorber. For this reason they can be used not only for ionizing particles and photons, but also for non-ionizing particles, any sort of radiation, and even to search for unknown forms of mass or energy (like dark matter); this lack of discrimination can also be a shortcoming. The most sensitive bolometers are very slow to reset (i.e., return to thermal equilibrium with the environment). On the other hand, compared to more conventional particle detectors, they are extremely efficient in energy resolution and in sensitivity. They are also known as thermal detectors. The first bolometers made by Langley consisted of two steel, platinum, or palladium foil strips covered with lampblack. One strip was shielded from radiation and one exposed to it.
Timothy Goodman, Stefano Alberti, Jean-Philippe Hogge, Ioannis Pagonakis, Konstantinos Avramidis
Basil Duval, Umar Sheikh, Luke Simons