In graph theory, a nowhere-zero flow or NZ flow is a network flow that is nowhere zero. It is intimately connected (by duality) to coloring planar graphs.
Let G = (V,E) be a digraph and let M be an abelian group. A map φ: E → M is an M-circulation if for every vertex v ∈ V
where δ+(v) denotes the set of edges out of v and δ−(v) denotes the set of edges into v. Sometimes, this condition is referred to as Kirchhoff's law.
If φ(e) ≠ 0 for every e ∈ E, we call φ a nowhere-zero flow, an M-flow, or an NZ-flow. If k is an integer and 0 < |φ(e)| < k then φ is a k-flow.
Let G = (V,E) be an undirected graph. An orientation of E is a modular k-flow if for every vertex v ∈ V we have:
The set of M-flows does not necessarily form a group as the sum of two flows on one edge may add to 0.
(Tutte 1950) A graph G has an M-flow if and only if it has a |M|-flow. As a consequence, a flow exists if and only if a k-flow exists. As a consequence if G admits a k-flow then it admits an h-flow where .
Orientation independence. Modify a nowhere-zero flow φ on a graph G by choosing an edge e, reversing it, and then replacing φ(e) with −φ(e). After this adjustment, φ is still a nowhere-zero flow. Furthermore, if φ was originally a k-flow, then the resulting φ is also a k-flow. Thus, the existence of a nowhere-zero M-flow or a nowhere-zero k-flow is independent of the orientation of the graph. Thus, an undirected graph G is said to have a nowhere-zero M-flow or nowhere-zero k-flow if some (and thus every) orientation of G has such a flow.
Tutte polynomial and Deletion–contraction formula
Let be the number of M-flows on G. It satisfies the deletion–contraction formula:
Combining this with induction we can show is a polynomial in where is the order of the group M. We call the flow polynomial of G and abelian group M.
The above implies that two groups of equal order have an equal number of NZ flows. The order is the only group parameter that matters, not the structure of M.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph and contains information about how the graph is connected. It is denoted by . The importance of this polynomial stems from the information it contains about .
In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e.
In the mathematical field of graph theory, a snark is an undirected graph with exactly three edges per vertex whose edges cannot be colored with only three colors. In order to avoid trivial cases, snarks are often restricted to have additional requirements on their connectivity and on the length of their cycles. Infinitely many snarks exist. One of the equivalent forms of the four color theorem is that every snark is a non-planar graph. Research on snarks originated in Peter G.
The combination of low cost clusters and multicore processors lowers the barrier for accessing massive amounts of computing power. As computational sciences advance, the use of in silico simulations to complement in vivo experiments promises parallel progr ...