In graph theory, a nowhere-zero flow or NZ flow is a network flow that is nowhere zero. It is intimately connected (by duality) to coloring planar graphs.
Let G = (V,E) be a digraph and let M be an abelian group. A map φ: E → M is an M-circulation if for every vertex v ∈ V
where δ+(v) denotes the set of edges out of v and δ−(v) denotes the set of edges into v. Sometimes, this condition is referred to as Kirchhoff's law.
If φ(e) ≠ 0 for every e ∈ E, we call φ a nowhere-zero flow, an M-flow, or an NZ-flow. If k is an integer and 0 < |φ(e)| < k then φ is a k-flow.
Let G = (V,E) be an undirected graph. An orientation of E is a modular k-flow if for every vertex v ∈ V we have:
The set of M-flows does not necessarily form a group as the sum of two flows on one edge may add to 0.
(Tutte 1950) A graph G has an M-flow if and only if it has a |M|-flow. As a consequence, a flow exists if and only if a k-flow exists. As a consequence if G admits a k-flow then it admits an h-flow where .
Orientation independence. Modify a nowhere-zero flow φ on a graph G by choosing an edge e, reversing it, and then replacing φ(e) with −φ(e). After this adjustment, φ is still a nowhere-zero flow. Furthermore, if φ was originally a k-flow, then the resulting φ is also a k-flow. Thus, the existence of a nowhere-zero M-flow or a nowhere-zero k-flow is independent of the orientation of the graph. Thus, an undirected graph G is said to have a nowhere-zero M-flow or nowhere-zero k-flow if some (and thus every) orientation of G has such a flow.
Tutte polynomial and Deletion–contraction formula
Let be the number of M-flows on G. It satisfies the deletion–contraction formula:
Combining this with induction we can show is a polynomial in where is the order of the group M. We call the flow polynomial of G and abelian group M.
The above implies that two groups of equal order have an equal number of NZ flows. The order is the only group parameter that matters, not the structure of M.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le polynôme de Tutte, aussi appelé polynôme dichromatique ou polynôme de Tutte–Whitney, est un polynôme invariant de graphes dont les valeurs expriment des propriétés d'un graphe. C'est un polynôme en deux variables qui joue un rôle important en théorie des graphes et en combinatoire. Il est défini pour tout graphe non orienté et contient des informations liées à ses propriétés de connexité. L'importance de ce polynôme provient des informations qu'il contient sur le graphe .
En théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
En théorie des graphes, une branche des mathématiques, un snark est un graphe cubique connexe, sans isthme et d'indice chromatique égal à 4. En d'autres termes, c'est un graphe dans lequel chaque sommet a trois voisins, et dont les arêtes ne peuvent pas être colorées avec seulement 3 couleurs sans que deux arêtes de même couleur ne se rencontrent en un même sommet (d'après le théorème de Vizing, l'indice chromatique d'un graphe cubique est 3 ou 4). Pour éviter les cas triviaux, on exige souvent de plus que les snarks aient une maille d'au moins 5.
The combination of low cost clusters and multicore processors lowers the barrier for accessing massive amounts of computing power. As computational sciences advance, the use of in silico simulations to complement in vivo experiments promises parallel progr ...