An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.
Oscillators are often characterized by the frequency of their output signal:
A low-frequency oscillator (LFO) is an oscillator that generates a frequency below approximately 20 Hz. This term is typically used in the field of audio synthesizers, to distinguish it from an audio frequency oscillator.
An audio oscillator produces frequencies in the audio range, 20 Hz to 20 kHz.
A radio frequency (RF) oscillator produces signals above the audio range, more generally in the range of 100 kHz to 100 GHz.
There are two general types of electronic oscillators: the linear or harmonic oscillator, and the nonlinear or relaxation oscillator. The two types are fundamentally different in how oscillation is produced, as well as in the characteristic type of output signal that is generated.
The most-common linear oscillator in use is the crystal oscillator, in which the output frequency is controlled by a piezo-electric resonator consisting of a vibrating quartz crystal. Crystal oscillators are ubiquitous in modern electronics, being the source for the clock signal in computers and digital watches, as well as a source for the signals generated in radio transmitters and receivers. As a crystal oscillator’s “native” output waveform is sinusoidal, a signal-conditioning circuit may be used to convert the output to other waveform types, such as the square wave typically utilized in computer clock circuits.
Linear or harmonic oscillators generate a sinusoidal (or nearly-sinusoidal) signal.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Microwave is a form of electromagnetic radiation with wavelengths ranging from about 30 centimeters to one millimeter corresponding to frequencies between 1000 MHz and 300 GHz respectively. Different sources define different frequency ranges as microwaves; the above broad definition includes UHF, SHF and EHF (millimeter wave) bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz (wavelengths between 0.3 m and 3 mm). In all cases, microwaves include the entire SHF band (3 to 30 GHz, or 10 to 1 cm) at minimum.
In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves (electromagnetic waves of radio frequency) and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information.
In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary component parts of all electronic devices that communicate by radio, such as radio and television broadcasting stations, cell phones, walkie-talkies, wireless computer networks, Bluetooth enabled devices, garage door openers, two-way radios in aircraft, ships, spacecraft, radar sets and navigational beacons.
Introduction aux Amplificateurs Opérationnels. Applications en contre-réaction négative, mode intégrateur-dérivateur, filtres actifs passe haut et passe bas. Notions avancées de GBW et Slew Rate. Prin
Comparaison entre les systèmes à composants discrets et les systèmes intégrés. Introduction aux systèmes électroniques numériques et analogiques et à leur interfaçage. Analyse sous forme d'un projet
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Label-free biosensors, combined with miniaturized micro-electromechanical sensory platforms, offer an attractive solution for real-time and facile monitoring of biomolecules due to their high sensitivity and selectivity without the need for specifically la ...
Parametric oscillators are examples of externally driven systems that can exhibit two stable states with opposite phase depending on the initial conditions. In this work, we propose to study what happens when the external forcing is perturbed by a continuo ...
Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three ...