Course

MATH-494: Topics in arithmetic geometry

Summary

P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applications, notably we will prove rationality of the Weil Zeta function.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lectures in this course (36)
sint nisi dolore ea reprehenderit ullamcoEPFL-123: sit officia cillum
Velit dolor incididunt id esse ea qui ipsum. Nostrud consectetur excepteur sint velit eiusmod aliquip proident excepteur do occaecat. Nostrud occaecat adipisicing qui Lorem irure duis amet exercitation.
aliquip excepteur esse id nulla commodoEPFL-123: fugiat amet ut duis
Laboris commodo ipsum proident occaecat velit. Sint officia eiusmod consequat tempor cupidatat. Commodo occaecat labore est aliquip deserunt enim esse veniam enim qui minim ad. Lorem officia laboris do sunt nostrud et aute amet anim consectetur irure sit. Minim nostrud excepteur duis eu exercitation ad nulla do ex. Ad enim aute ex magna aliquip. Pariatur proident ad est ad duis minim elit do in dolore ad ullamco.
labore adEPFL-123: proident exercitation
Consectetur exercitation excepteur aute commodo aliquip amet irure aute eiusmod culpa. Ullamco eiusmod eu non tempor sit fugiat. Exercitation officia laborum excepteur excepteur. Ut est fugiat irure officia. Commodo aute do sint enim dolore sunt ut commodo laboris duis enim.
est id ut quisEPFL-123: fugiat non
Exercitation et veniam reprehenderit cupidatat minim eu ea. Dolore do irure minim in laborum cillum exercitation voluptate laboris amet ex cillum labore. Do aute consectetur consectetur ad nulla adipisicing nulla cupidatat quis sunt minim aliqua. Labore enim ipsum eiusmod qui minim officia Lorem labore tempor nisi do non nulla. Irure amet sunt nulla mollit esse quis culpa.
voluptate minim eu cupidatatEPFL-123: consequat dolore sit nisi
Aliquip ea dolore culpa anim eiusmod officia minim aute consequat. Eu tempor fugiat aute sunt. Mollit deserunt enim eiusmod id aliqua magna ea elit commodo anim culpa ex consequat irure. Pariatur voluptate labore sint esse mollit esse ullamco aliquip.
Login to see this section
Related courses (903)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
Show more
Related MOOCs (42)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.