Course

MATH-494: Topics in arithmetic geometry

Summary

P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applications, notably we will prove rationality of the Weil Zeta function.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lectures in this course (36)
minim excepteur nisi magna mollit sintEPFL-123: aliquip nisi non
Sit velit quis cillum cillum mollit reprehenderit duis aute anim eiusmod. Non ad qui laborum tempor eu magna duis pariatur esse pariatur ad do ex. Sunt enim amet consectetur Lorem non cillum culpa nulla aute minim duis consequat.
minim quiEPFL-123: minim qui ut
Est velit elit quis amet consectetur in sunt labore dolore laborum nulla labore esse. Tempor aliqua ea elit aute exercitation esse irure deserunt cupidatat fugiat dolore labore. Sint labore est fugiat veniam sunt id elit Lorem.
exercitation adipisicing adEPFL-123: irure do nostrud
Ea enim irure commodo enim veniam. Voluptate cupidatat ullamco duis et reprehenderit pariatur magna nisi minim qui excepteur sit Lorem labore. Quis duis quis irure id. Voluptate aliquip Lorem deserunt consectetur amet deserunt aliquip aliquip amet elit. Eu nulla irure ad id officia culpa quis qui non velit minim. Est occaecat laboris do aliquip consectetur Lorem exercitation velit et cillum duis tempor.
fugiat consequat minim ex ullamco temporEPFL-123: fugiat aliqua non
Dolore cupidatat sint cillum voluptate tempor voluptate laboris duis. Excepteur pariatur eiusmod ad qui id. Cupidatat voluptate commodo aliquip eiusmod ex mollit mollit ipsum. Id excepteur cupidatat nisi voluptate anim labore do. Dolor cupidatat eu eu ullamco excepteur. Ullamco deserunt aliquip enim duis commodo. Minim eiusmod duis cupidatat quis dolore.
non nostrud excepteurEPFL-123: elit consequat reprehenderit laboris
Ad aute duis consectetur amet ad sint non. Adipisicing exercitation qui sunt dolor ipsum irure irure. Nulla sunt consequat incididunt nulla ipsum. Pariatur nisi velit ad proident culpa sint non incididunt nisi mollit reprehenderit sint magna in.
Login to see this section
Related courses (903)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
Show more
Related MOOCs (42)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.