Index of a subgroupIn mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index measures the "relative sizes" of G and H.
Rotations in 4-dimensional Euclidean spaceIn mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article rotation means rotational displacement. For the sake of uniqueness, rotation angles are assumed to be in the segment except where mentioned or clearly implied by the context otherwise. A "fixed plane" is a plane for which every vector in the plane is unchanged after the rotation.
Canonical mapIn mathematics, a canonical map, also called a natural map, is a map or morphism between objects that arises naturally from the definition or the construction of the objects. Often, it is a map which preserves the widest amount of structure. A choice of a canonical map sometimes depends on a convention (e.g., a sign convention). A closely related notion is a structure map or structure morphism; the map or morphism that comes with the given structure on the object. These are also sometimes called canonical maps.
Geometric progressionIn mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with common ratio 1/2. Examples of a geometric sequence are powers rk of a fixed non-zero number r, such as 2k and 3k.
Nth rootIn mathematics, taking the nth root is an operation involving two numbers, the radicand and the index or degree. Taking the nth root is written as , where x is the radicand and n is the index (also sometimes called the degree). This is pronounced as "the nth root of x". The definition then of an nth root of a number x is a number r (the root) which, when raised to the power of the positive integer n, yields x: A root of degree 2 is called a square root (usually written without the n as just ) and a root of degree 3, a cube root (written ).
PiThe number pi (paɪ; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number pi appears in many formulae across mathematics and physics. It is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern.
Prime numberA prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4.
Aurifeuillean factorizationIn number theory, an aurifeuillean factorization, named after Léon-François-Antoine Aurifeuille, is factorization of certain integer values of the cyclotomic polynomials. Because cyclotomic polynomials are irreducible polynomials over the integers, such a factorization cannot come from an algebraic factorization of the polynomial. Nevertheless, certain families of integers coming from cyclotomic polynomials have factorizations given by formulas applying to the whole family, as in the examples below.
Cartesian closed categoryIn , a is Cartesian closed if, roughly speaking, any morphism defined on a of two can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by , whose internal language, linear type systems, are suitable for both quantum and classical computation.
Finite ringIn mathematics, more specifically abstract algebra, a finite ring is a ring that has a finite number of elements. Every finite field is an example of a finite ring, and the additive part of every finite ring is an example of an abelian finite group, but the concept of finite rings in their own right has a more recent history. Although rings have more structure than groups, the theory of finite rings is simpler than that of finite groups.