Krull ringIn commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which are exactly the Krull domains of dimension at most 1. In this article, a ring is commutative and has unity. Let be an integral domain and let be the set of all prime ideals of of height one, that is, the set of all prime ideals properly containing no nonzero prime ideal.
FractionA fraction (from fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction (examples: and ) consists of an integer numerator, displayed above a line (or before a slash like ), and a non-zero integer denominator, displayed below (or after) that line.
Morita equivalenceIn abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent (denoted by ) if their are equivalent (denoted by ). It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958. Rings are commonly studied in terms of their modules, as modules can be viewed as representations of rings.
Spectrum of a ringIn commutative algebra, the prime spectrum (or simply the spectrum) of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings . For any ideal I of R, define to be the set of prime ideals containing I. We can put a topology on by defining the to be This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows. For f ∈ R, define Df to be the set of prime ideals of R not containing f.
Noetherian moduleIn abstract algebra, a Noetherian module is a module that satisfies the ascending chain condition on its submodules, where the submodules are partially ordered by inclusion. Historically, Hilbert was the first mathematician to work with the properties of finitely generated submodules. He proved an important theorem known as Hilbert's basis theorem which says that any ideal in the multivariate polynomial ring of an arbitrary field is finitely generated.
Ideal class groupIn number theory, the ideal class group (or class group) of an algebraic number field K is the quotient group JK/PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K. The theory extends to Dedekind domains and their field of fractions, for which the multiplicative properties are intimately tied to the structure of the class group.
Minimal polynomial (field theory)In field theory, a branch of mathematics, the minimal polynomial of an element α of a field extension is, roughly speaking, the polynomial of lowest degree having coefficients in the field, such that α is a root of the polynomial. If the minimal polynomial of α exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1. More formally, a minimal polynomial is defined relative to a field extension E/F and an element of the extension field E/F.
Fermat's Last TheoremIn number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of Arithmetica. Fermat added that he had a proof that was too large to fit in the margin.
Glossary of algebraic geometryThis is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Topological ringIn mathematics, a topological ring is a ring that is also a topological space such that both the addition and the multiplication are continuous as maps: where carries the product topology. That means is an additive topological group and a multiplicative topological semigroup. Topological rings are fundamentally related to topological fields and arise naturally while studying them, since for example completion of a topological field may be a topological ring which is not a field.