François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Edgard Gnansounou
-
1983 Ing. Civil EPFL
-
1991 Dr ès Sciences techniques, EPFL
-
Directeur du Laboratoire de systèmes énergétiques (LASEN) de 2003 à 2008
-
Dès 2008, Responsable du groupe de Recherche en Bioénergie et Planification énergétique
-
Co-fondateur du bureau d'étude ENERS Energy Concept
-
Président de la Fondation SUD (Solidarités Universitaires pour le Développement)
Je suis membre de différentes associations professionnelles parmi lesquelles figuent le Conseil Mondial de l'énergie (CME) et l'Association internationale pour l'économie de l'énergie (AIEE). Comme membre du groupe d'étude du CME sur les vulnérabilités, j'ai développé les métriques utilisées pour évaluer la vulnérabilité énergétique des pays industrialisés.
Depuis janvier 2008 : membre du Comité d'édition du journal international Bioresource Technology.
Depuis 2009: membre du Comité de la "European Biofuels Technology Platform" Daniel FavratDaniel Favrat got his Master degree in Mechanical Engineering from EPFL in 1972 and his PhD also from EPFL. He then spent 12 years in industrial research laboratories in Canada (Esso Canada) and Switzerland (CERAC: Centre Européen de Recherche Atlas Copco). From 1988 to 2013, he was full professor and director of the Industrial Energy Systems Laboratory (LENI) at EPFL. During that period he was successively director of the Institute of Energy and director of the Institute of Mechanical Engineering. From August 2013 he works at EPFL Energy Center first as director ad interim and now as director technologies.
His research fields include systemic analyses accounting for energy, environment and economics (so-called environomic optimisation) and advanced conversion systems for a more rational use of energy (heat pumps &ORC, engines, fuel cells, power plants, etc).
He is a member of the Swiss Academy of Engineering Sciences and of the National Academy of Technology in France. He has also an active participation in the World Federation of Engineering Organizations (WFEO) as a member of the executive committee and vice-chair of the energy committee. He is associate editor of the journal "Energy" and of International Journal of thermodynamics. He is the author of several books on thermodynamics and energy systems analysis. He is also affiliate professor at the Royal Institute of Technology (KTH) in Stockholm.
Jan Van HerleBorn in Antwerp, Belgium. In Switzerland since 1983. Became Swiss citizen in 2004 out of conviction of principles of democracy and bottom-up participation. No double nationality. Village Council Member for 2 five-year mandates in 2006-2016.
1987 : Chemist from Basel University (CH).
1988 : Post-graduate IT diploma from Basel Engineering School.
1989 : Industry internship ABB Baden (CH).
1990-1993 : PhD Thesis EPFL, on Solid Oxide Fuel Cell cathode reaction mechanisms.
1994-1995 : Japanese Postdoctoral Fellowship in Tsukuba, Japan, on ceramic powders.
1995-2000 : Researcher at EPFL, Dpt. Chemistry : project responsible in PPM2 (materials), FP4-BriteEuram, NEDO (Japan), Swiss Gas Union (CH, oxygen membranes).
1998-2000 : Masters in Energy Technology, EPFL.
2000 : Cofounder of HTceramix SA (EPFL spin-off), now based in Yverdon (14 employees). Taken over by SOLIDpower in 2007, now 250 employees with 70 MCHF raised.
2000 : 1st Assistant and lecturer at LENI (STI-IGM) : fuel cell group responsible, projects on biogas (Federal Energy Office), woodgas (CCEM), fuel cell stacking (CTI, FP6, FNS), ceramic separation membranes (COST, FNS), microtubes (STI Seed), stability/lifetime/reliability in fuel cells (Electricité de France, swisselectric research). Currently 4 Ph D theses ongoing, 14 theses concluded, of which 5 colateral with SB and IMX. M.E.R. since Nov 2008.
Total funding raised so far >18 MCHF (50% as main applicant; 30% outside CH; 20% industry).
Scientific output : >135 peer-reviewed publications, >120 conference papers, 40 invited presentations (8 keynotes), >70 granted proposals.
Fluent in 5 languages (Dutch, French, German ( Swiss-german), English, Spanish).
Christian Ludwig2005 - today: Adjunct Professor at EPFL in the field of Solid Waste Treatment and head of the Chemical Processes and Materials research group (CPM) at Paul Scherrer Institute (PSI). Joint EPFL-PSI Professorship on Solid Waste Treatment. 2000 - today: Head, Group of Chemical Processes and Materials (CPM) at Paul Scherrer Institut (PSI). In 2009 the LEM unit was closed and the CPM group is now affiliated to the Bioenergy and Catalysis Laboratory (LBK) of the Energy and Environment Research Division (ENE). Since June 2002 permanent position ("tenure"). 1997 - 1999: Senior Scientist. Paul Scherrer Institut (PSI), General Energy Research Department, Element Cycles Section. 1995 - 1997: Research Fellow. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Department of Resource and Waste Management. 1993 - 1995: Post-doc Fellow. University of California Davis, Department of Land, Air, and Water Resources (LAWR). 1990 - 1993: PhD Student. University of Berne, Department of Inorganic, Analytical, and Physical Chemistry. 1989 - 1990: Master Student. University of Berne, Department of Inorganic, Analytical, and Physical Chemistry.
Michel BierlaireBorn in 1967, Michel Bierlaire holds a PhD in Mathematical Sciences from the Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium (University of Namur). Between 1995 and 1998, he was research associate and project manager at the Intelligent Transportation Systems Program of the Massachusetts Institute of Technology (Cambridge, Ma, USA). Between 1998 and 2006, he was a junior faculty in the Operations Research group ROSO within the Institute of Mathematics at EPFL. In 2006, he was appointed associate professor in the School of Architecture, Civil and Environmental Engineering at EPFL, where he became the director of the Transport and Mobility laboratory. Since 2009, he is the director of TraCE, the Transportation Center. From 2009 to 2017, he was the director of Doctoral Program in Civil and Environmental Engineering at EPFL. In 2012, he was appointed full professor at EPFL. Since September 2017, he is the head of the Civil Engineering Institute at EPFL. His main expertise is in the design, development and applications of models and algorithms for the design, analysis and management of transportation systems. Namely, he has been active in demand modeling (discrete choice models, estimation of origin-destination matrices), operations research (scheduling, assignment, etc.) and Dynamic Traffic Management Systems. As of August 2021, he has published 136 papers in international journals, 4 books, 41 book chapters, 193 articles in conference proceedings, 182 technical reports, and has given 195 scientific seminars. His Google Scholar h-index is 68. He is the founder, organizer and lecturer of the EPFL Advanced Continuing Education Course "Discrete Choice Analysis: Predicting Demand and Market Shares". He is the founder of hEART: the European Association for Research in Transportation. He was the founding Editor-in-Chief of the EURO Journal on Transportation and Logistics, from 2011 to 2019. He is an Associate Editor of Operations Research. He is the editor of two special issues for the journal Transportation Research Part C. He has been member of the Editorial Advisory Board (EAB) of Transportation Research Part B since 1995, of Transportation Research Part C since January 1, 2006.
Rakesh ChawlaOriginaire d'Inde, Rakesh Chawla y est né en 1947. Après avoir obtenu son doctorat en génie nucléaire à l'Imperial College de l'Université de Londres en 1970, il travaille jusqu'en 1972 à Winfrith comme Research Fellow de la United Kingdom Atomic Energy Authority.
De 1972 à 1978, il est engagé comme professeur assistant par l'Institut Indien de Technologie à Kanpur dans le cadre du programme Génie Nucléaire et Technologie. Depuis 1978, il travaille à l'Institut Paul Scherrer (PSI) à Würenlingen-Villigen dans le département de recherche Energie Nucléaire. En tant que chef de projet, il est responsable des divers travaux R&D, comme les études faites sur le réacteur de recherche PROTEUS.
En 1994, il est nommé professeur extraordinaire en physique des réacteurs au Département de physique de l'EPFL, poste qui comprend les activités d'enseignement à l'EPFL et la direction du Laboratoire de physique des réacteurs et de technique des systèmes au PSI. En 1997, il est nommé professeur ordinaire son enseignement porte sur les aspects physiques du génie nucléaire et les travaux pratiques utilisant le réacteur CROCUS à l'EPFL. Ses recherches actuelles comprennent les travaux expérimentaux et analytiques liés à la sécurité des systèmes avancés, au cycle de combustible et à la transmutation des déchets, ainsi qu'au comportement dynamique des centrales nucléaires.