Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science.
While the roots of formalised logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics. Frege's Begriffsschrift (1879) introduced both a complete propositional calculus and what is essentially modern predicate logic. His Foundations of Arithmetic, published in 1884, expressed (parts of) mathematics in formal logic. This approach was continued by Russell and Whitehead in their influential Principia Mathematica, first published 1910–1913, and with a revised second edition in 1927. Russell and Whitehead thought they could derive all mathematical truth using axioms and inference rules of formal logic, in principle opening up the process to automatisation. In 1920, Thoralf Skolem simplified a previous result by Leopold Löwenheim, leading to the Löwenheim–Skolem theorem and, in 1930, to the notion of a Herbrand universe and a Herbrand interpretation that allowed (un)satisfiability of first-order formulas (and hence the validity of a theorem) to be reduced to (potentially infinitely many) propositional satisfiability problems.
In 1929, Mojżesz Presburger showed that the theory of natural numbers with addition and equality (now called Presburger arithmetic in his honor) is decidable and gave an algorithm that could determine if a given sentence in the language was true or false.
However, shortly after this positive result, Kurt Gödel published On Formally Undecidable Propositions of Principia Mathematica and Related Systems (1931), showing that in any sufficiently strong axiomatic system there are true statements which cannot be proved in the system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores zero-knowledge construction, setup models, and the power of interaction in cryptographic protocols, including Sigma Protocol and NP Zero-Knowledge Proofs.
Prover9 is an automated theorem prover for first-order and equational logic developed by William McCune. Prover9 is the successor of the Otter theorem prover also developed by William McCune. Prover9 is noted for producing relatively readable proofs and having a powerful hints strategy. Prover9 is intentionally paired with Mace4, which searches for finite models and counterexamples. Both can be run simultaneously from the same input, with Prover9 attempting to find a proof, while Mace4 attempts to find a (disproving) counter-example.
Vampire is an automatic theorem prover for first-order classical logic developed in the Department of Computer Science at the University of Manchester. Up to Version 3, it was developed by Andrei Voronkov together with Kryštof Hoder and previously with Alexandre Riazanov. Since Version 4, the development has involved a wider international team including Laura Kovacs, Giles Reger, and Martin Suda. Since 1999 it has won at least 53 trophies in the CADE ATP System Competition, the "world cup for theorem provers", including the most prestigious FOF division and the theory-reasoning TFA division.
The invention is related to a method allowing a prover holding a secret key (x) to prove its identity to a verifier and to prove to this verifier that he is within a predetermined distance of this verifier, said method comprising an initialization phase du ...
2018
,
The invention is related to a method allowing a prover holding a secret key (x) to prove its identity to a verifier and to prove to this verifier that he is within a predetermined distance of this verifier, said method comprising an initialization phase du ...
2015
We present a new method for automatic generation of loop invariants for programs containing arrays. Unlike all previously known methods, our method allows one to generate first-order invariants containing alternations of quantifiers. The method is based on ...
Springer-Verlag New York, Ms Ingrid Cunningham, 175 Fifth Ave, New York, Ny 10010 Usa2009