Gérard GremaudGérard Gremaud was born in Fribourg (Switzerland) in 1949. After classical studies at College St Michel in Fribourg, he received his diploma in physics engineering in 1974 and his PhD in 1981 at EPFL. From this date, he became responsible for research at EPFL (Swiss Federal Institute of Technology of Lausanne). He is then co-responsible for the Mechanical Spectroscopy Laboratory at the Institute of Physics of Complex Materials. In 2002, he became also chief of the service of physics teaching laboratories and physics classroom demonstrations of EPFL. In 2005, he obtained the title of Professor of EPFL. From 1976, he was teaching in the fields of acoustics, vibrations, metallurgical physics, thermodynamics, dislocation theory, metrology, physics laboratories, and of basic physics (mechanics, thermodynamics and introduction to quantum physics) and physics demonstrations. Since 2012, he is honorary professor of EPFL.
He was active in a variety of research fields : dislocation dynamics, structural phase transitions, mechanical and tribological properties at nanoscale, and mechanical properties of vibrated granular materials (mechanical-spectroscopy). In these fields, he has directed about ten PhD thesis. He is the author of numerous theoretical models which are largely cited. Specialized in acoustical spectroscopy techniques, he developped several original experimental techniques, such as the US-LF coupling technique (representative publications). His publications include about 130 research papers, 13 book chapters, 6 popular publications, 3 books as editor and 2 books as author.
In addition to about 40 invited lectures and conference talks in leading institutions worldwide, he has co-organized several international conferences and summer schools. Member of several scientific societies, he contributes also as referee for numerous scientific journals and several scientific research funding organisations. He was collaborating also during several years to two small companies in Switzerland, as administrator or president.
In 2011, Gérard Gremaud has been awarded the Zener prize and Zener Gold medal. This distinction recognizes important contributions in the field of Materials Science and Physics.
Olivier MartinOlivier J.F. Martin received the M.Sc. and Ph.D. degrees in physics in 1989 and 1994, respectively, from the Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland. In 1989, he joined IBM Zurich Research Laboratory, where he investigated thermal and optical properties of semiconductor laser diodes. Between 1994 and 1997 he was a research staff member at the Swiss Federal Institute of Technology, Zurich (ETHZ). In 1997 he received a Lecturer fellowship from the Swiss National Science Foundation (SNSF). During the period 1996-1999, he spent a year and a half in the U.S.A., as invited scientist at the University of California in San Diego (UCSD). In 2001 he received a Professorship grant from the SNSF and became Professor of Nano-Optics at the ETHZ. In 2003, he was appointed Professor of Nanophotonics and Optical Signal Processing at the Swiss Federal Institute of Technology, Lausanne (EPFL), where he is currently head of the Nanophotonics and Metrology Laboratory and Director of the Microengineering Section.
Arnaud MagrezEducation
PhD., Materials Science, summa cum laude, Université de Nantes, 2002
M.S., Chemistry, Université des Sciences et Technologies de Lille, 1999
Academic positions
Head of the Crystal Growth Facility, EPFL, 2012-present
Research Associate, Laboratoire de Physique de la Matière Complexe, EPFL, 2003-2012
Research Fellow, Peter Grunberg Institute, FZ-Juelich, 2002-2003
Administrative positions at EPFL
Scientific staff member, EPFL Assembly, 2015-present
Scientific staff member, School Council SB, 2014-present
Member of the IPHYS office 2016-present
Member of the ICMP office 2012-2015
Member of the safety committee of ICMP 2010-2015
Caroline KarmannCaroline Karmann is a PostDoctoral Researcher at the Laboratory of Integrated Performance in Design (LIPID) in the Swiss Federal Institute of Technology, Lausanne (EPFL). Caroline is interested in architecture and daylight in spaces, and in how our built environments affect our well-being. Her current research lies in the gap between visual comfort and visual interests based on the subjective and behavioral responses of occupants.
Caroline holds PhD in Building Science in Architecture from UC Berkeley and a dual Master’s degree in Architecture and Energy Engineering from INSA Strasbourg. Her doctoral project was devoted to indoor environmental quality in buildings using radiant conditioning systems. She conducted full-scale laboratory experiments and fields studies in 20 buildings. Her work was presented in multiple conferences including the ASHRAE conference, Windsor and PLEA, where she won Best Paper Award in 2018.
Caroline has five years of professional experience in the field of climate responsive building design. She worked as a consultant for daylight and energy at Transsolar (Stuttgart), where she specialized in building performance simulation, in particular daylighting simulation. Following her PhD, she worked for one year at Arup (London), where she conducted research on city resilience, and supported research activities through workshop facilitation and strategic planning.
Eugen Brühwilerbirth date: 19.11.1958 nationality: Swiss (native from Dussnang, Canton of Thurgau) Education : - July 1988 : doctoral degree from the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland with a thesis entitled Fracture mechanics of dam concrete subjected to quasi-static and seismic loading conditions - December 1983 : civil engineering diploma (university degree) from the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland Professional Experience : - Since 1st April 1995 : Professor of Structural Engineering at EPFL and Head of the Laboratory of Maintenance, Construction and Safety for Civil Structures (MCS) (often considered being the first chair worldwide devoted exclusively to existing civil structures). - 1991-94 Project Manager and structural engineer with the Swiss Federal Railways (SBB), Division of Bridges and Structures, Zurich: Monitoring and maintenance of bridges and structures, Project manager and checking engineer for the construction of new bridges and rehabilitation of existing bridges. - 1989/90 Research associate at the Department of Civil Engineering, University of Colorado, Boulder, USA : Fracture mechanics of concrete and fracture of concrete dams. - 1986-88 Doctoral student at EPFL-LMC (Building Materials, Prof. Wittmann) : Fracture mechanics of concrete, fracture of concrete dams under seismic loading - 1984/85 Research engineer at EPFL-ICOM (Steel Structures, Prof. Badoux and Prof. Hirt) : Fatigue behaviour and fracture mechanics of riveted bridges
Francesco MondadaDr. Mondada received his M.Sc. in micro-engineering in 1991 and his Doctoral degree in 1997 at EPFL. During his thesis he co-founded the company K-Team, being both CEO and president of the company for about 5 years. He is one of the three main developers of the Khepera robot, considered as a standard in bio-inspired robotics and used by more than 1,000 universities and research centers worldwide. Fully back in research in 2000 and after a short period at CALTECH, he participated to the SWARM-BOTS project as the main developer of the s-bot robot platform, which was ranked on position 39 in the list of The 50 Best Robots Ever (fiction or real) by the Wired Journal in 2006. The SWARM-BOTS project was selected as FET-IST success story by the EU commission. He is author of more than 100 papers in the field of bio-inspired robotics and system level robot design. He is co-editor of several international conference proceedings. In November 2005 he received the EPFL Latsis University prize for his contributions to bio-inspired robotics. In 2011 he received the "Crédit Suisse Award for Best Teaching" from EPFL and in 2012 the "polysphère" award from the students as best teacher in the school of engineering. His interests include the development of innovative mechatronic solutions for mobile and modular robots, the creation of know-how for future embedded applications, and making robot platforms more accessible for education, research, and industrial development.