Jean-Jacques MeisterA Swiss citizen, Jean-Jacques Meister was born in 1950. He received a diploma in electrical engineering, then a diploma in physics from the Swiss Federal Institute of Technology in Lausanne (EPFL). He joined the Institute of Biomedical Engineering at the Swiss Federal Institute of Technology in Zurich and obtained a PhD in1983. From 1984 to 1990, he worked in different areas of biophysics and biomedical engineering. His main contributions concern novel noninvasive methods for the prevention and diagnosis of cardiovascular diseases: mechanical properties of the arterial wall, arterial hemodynamics, and Doppler ultrasonography. In 1990, he was recruited as a full professor of experimental physics at the Swiss Federal Institute of Technology in Lausanne. He was director of the laboratory of biomedical engineering until 2001, then director of the laboratory of cell biophysics. His fields of research are cellular biophysics: cytoskeleton dynamics, motility & adhesion of cells and calcium dynamics in smooth muscle cells. He spent a sabbatical leave in 2000 at the famous Marine Biological Laboratory, Woods Hole, Massachusetts -USA to improve his skills in molecular and cellular biology. His teaching activities include courses in general physics, Newtonian mechanics, biomedical engineering and biophysics presented to undergraduate and graduate EPFL students in physics and engineering. He is author or co-author of more than 230 scientific papers & book chapters and 8 international patents.
Cathrin BriskenCathrin Brisken, MD, PhD, is Associate Professor of Life Sciences at the Swiss Federal Institute of Technology Lausanne (EPFL). Dr. Brisken is internationally recognized for her work on endocrine control of mammary gland development and breast carcinogenesis.
Dr. Brisken received her MD and her PhD degree in Biophysics from the Georg August University of Göttingen, Germany. She completed her postdoctoral work in cancer biology with Dr. R.A. Weinberg at the Whitehead Institute of Biomedical Research in Cambridge, MA, USA. She previously held appointments at the Cancer Center of the Massachusetts General Hospital, Harvard Medical School, Boston and the Swiss Institute for Experimental Cancer Research (ISREC).
Research in Dr. Brisken’s laboratory focuses on the cellular and molecular underpinnings of estrogen and progesterone receptor signaling in the breast and the respective roles of these hormones and hormonally active compounds in carcinogenesis. The aim is to understand how recurrent exposures to endogenous and exogenous hormones contribute to breast carcinogenesis in order to better prevent and treat the disease. The laboratory has pioneered in vivo approaches to genetically dissect the role of the reproductive hormones in driving mouse mammary gland development and shown how they control intercellular communication. Dr. Brisken’s group has developed ex vivo and humanized mouse models using patient samples to study hormone action in human tissues in normal settings and during disease progression.
Dr. Brisken is member of the International Breast Cancer Study Group (IBCSG) Biological Protocol Working Group. She served as Dean of EPFL Doctoral School (more than 2000 PhD students in 18 PhD programs), as member of the Hinterzartener Kreis, the oncology think-tank associated with the German Science Foundation, and numerous Swiss, European, and AACR committees. She co-founded the International Cancer Prevention Institute.
Graham KnottGraham Knott received his degree in physiology from the University of Southampton, UK, in 1990, and his PhD in neuroscience from the University of Tasmania, Australia, in 1995. He moved to the University of Lausanne in Switzerland in 1999 where he researched the plasticity of neuronal connectivity in the adult brain, developing correlative light and electron microscopy methods for the analysis of in vivo imaged neurons. In 2006 Graham joined the Ecole Polytechnique Fédérale de Lausanne, establishing the Bio Electron Microscopy Facility and has continued his research interests in brain plasticity and 3D electron microscopy.