Transient stateA system is said to be transient or in a transient state when a process variable or variables have been changed and the system has not yet reached a steady state. The time taken for the circuit to change from one steady state to another steady state is called the transient time. When a chemical reactor is being brought into operation, the concentrations, temperatures, species compositions, and reaction rates are changing with time until operation reaches its nominal process variables.
Dynamic programmingDynamic programming is both a mathematical optimization method and an algorithmic paradigm. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively.
Value functionThe value function of an optimization problem gives the value attained by the objective function at a solution, while only depending on the parameters of the problem. In a controlled dynamical system, the value function represents the optimal payoff of the system over the interval [t, t1] when started at the time-t state variable x(t)=x. If the objective function represents some cost that is to be minimized, the value function can be interpreted as the cost to finish the optimal program, and is thus referred to as "cost-to-go function.
Shape optimizationShape optimization is part of the field of optimal control theory. The typical problem is to find the shape which is optimal in that it minimizes a certain cost functional while satisfying given constraints. In many cases, the functional being solved depends on the solution of a given partial differential equation defined on the variable domain. Topology optimization is, in addition, concerned with the number of connected components/boundaries belonging to the domain.
Exponential stabilityIn control theory, a continuous linear time-invariant system (LTI) is exponentially stable if and only if the system has eigenvalues (i.e., the poles of input-to-output systems) with strictly negative real parts. (i.e., in the left half of the complex plane). A discrete-time input-to-output LTI system is exponentially stable if and only if the poles of its transfer function lie strictly within the unit circle centered on the origin of the complex plane. Systems that are not LTI are exponentially stable if their convergence is bounded by exponential decay.
Time-variant systemA time-variant system is a system whose output response depends on moment of observation as well as moment of input signal application. In other words, a time delay or time advance of input not only shifts the output signal in time but also changes other parameters and behavior. Time variant systems respond differently to the same input at different times. The opposite is true for time invariant systems (TIV). There are many well developed techniques for dealing with the response of linear time invariant systems, such as Laplace and Fourier transforms.
Single-input single-output systemIn control engineering, a single-input and single-output (SISO) system is a simple single-variable control system with one input and one output. In radio, it is the use of only one antenna both in the transmitter and receiver. SISO systems are typically less complex than multiple-input multiple-output (MIMO) systems. Usually, it is also easier to make an order of magnitude or trending predictions "on the fly" or "back of the envelope". MIMO systems have too many interactions for most of us to trace through them quickly, thoroughly, and effectively in our heads.
Algebraic Riccati equationAn algebraic Riccati equation is a type of nonlinear equation that arises in the context of infinite-horizon optimal control problems in continuous time or discrete time. A typical algebraic Riccati equation is similar to one of the following: the continuous time algebraic Riccati equation (CARE): or the discrete time algebraic Riccati equation (DARE): P is the unknown n by n symmetric matrix and A, B, Q, R are known real coefficient matrices.
BacksteppingIn control theory, backstepping is a technique developed circa 1990 by Petar V. Kokotovic and others for designing stabilizing controls for a special class of nonlinear dynamical systems. These systems are built from subsystems that radiate out from an irreducible subsystem that can be stabilized using some other method. Because of this recursive structure, the designer can start the design process at the known-stable system and "back out" new controllers that progressively stabilize each outer subsystem.
Perceptual control theoryPerceptual control theory (PCT) is a model of behavior based on the properties of negative feedback control loops. A control loop maintains a sensed variable at or near a reference value by means of the effects of its outputs upon that variable, as mediated by physical properties of the environment. In engineering control theory, reference values are set by a user outside the system. An example is a thermostat. In a living organism, reference values for controlled perceptual variables are endogenously maintained.