Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
Background Socio-emotional difficulties often result from very preterm (VPT) birth. The amygdala's developmental trajectory, including its nuclei, has been recognized as a significant factor in observed difficulties. This study aims to assess the relations ...
Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, w ...
Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order modeling (ROM) context, one is interested in obtaining real -time and many-query evaluations of parametric ...
While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that th ...
The goal of this thesis is to propose pragmatic solutions to real challenges faced in the industry. The scope of this thesis encompasses two subjects: frequency-based structured controller synthesis for linear time-invariant (LTI) systems on one side, and ...
Combining galaxy clustering information from regions of different environmental densities can help break cosmological parameter degeneracies and access non-Gaussian information from the density field that is not readily captured by the standard two-point c ...
Breast cancer is a significant global health burden, causing a substantial number of deaths. Systemic metastatic tumour cell dissemination is a major cause of poor outcomes. Understanding the mechanisms underlying metastasis is crucial for effective interv ...