Klaus KernKlaus Kern is Professor of Physics at EPFL and Director and Scientific Member at the Max-Planck-Institute for Solid State Research in Stuttgart, Germany. He also is Honorary Professor at the University of Konstanz, Germany. His present research interests are in nanoscale science, quantum technology and in microscopy at the atomic limits of space and time. He holds a chemistry degree and PhD from the University of Bonn and a honorary doctors degree from the University of Aalborg. After his doctoral studies he was staff scientist at the Research Center Jülich and visiting scientist at Bell Laboratories, Murray Hill before joining the Faculty of EPFL in 1991 and the Max-Planck-Society in 1998. Professor Kern has authored and coauthored close to 700 scientific publications, which have received nearly 60‘000 citations. He has served frequently on advisory committees to universities, professional societies and institutions and has received numerous scientific awards and honors, including the 2008 Gottfried-Wilhelm-Leibniz Prize and the 2016 Van‘t Hoff Prize. Prof. Kern has also educated a large number of leading scientists in nanoscale physics and chemistry. During the past twenty-five years he has supervised one hundred PhD students and sixty postdoctoral fellows. Today, more than fifty of his former students and postdocs hold prominent faculty positions at Universities around the world.
François AvellanProf. François Avellan, director of the EPFL Laboratory for Hydraulic Machines, graduated in Hydraulic Engineering from Ecole nationale supérieure d'hydraulique, Institut national polytechnique de Grenoble, France, in 1977 and, in 1980, got his doctoral degree in engineering from University of Aix-Marseille II, France. Research associate at EPFL in 1980, he is director of the EPFL Laboratory for Hydraulic Machines since 1994 and, in 2003, was appointed Ordinary Professor in Hydraulic Machinery. Supervising 37 EPFL doctoral theses, he was distinguished by SHF, Société hydrotechnique de France, awarding him the "Grand Prix 2010 de l'hydrotechnique". His main research domains of interests are hydrodynamics of turbine, pump and pump-turbines including cavitation, hydro-acoustics, design, performance and operation assessments of hydraulic machines. Prof. Avellan was Chairman of the IAHR Section on Hydraulic Machinery and Systems from 2002 to 2012. He has conducted successfully several Swiss and international collaborative research projects, involving key hydropower operators and suppliers, such as:
-
Coordination for the FP7 European project n° 608532 "HYPERBOLE: HYdropower plants PERformance and flexiBle Operation towards Lean integration of new renewable Energies" (2013-2017);
-
Deputy Head of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE) to carry out innovative and sustainable research in the areas of geo-energy and hydropower for phase I (2013-2016) and Phase II (2017, 2010) to be approved.
-
EUREKA European research projects: N° 4150 and N° 3246, "HYDRODYNA, Harnessing the dynamic behavior of pump-turbines", (2003-2011), N° 1605, "FLINDT, Flow Investigation in Draft Tubes", http://flindt.epfl.ch/, (1997-2002). N° 2418, "SCAPIN, Stability of Operation of Francis turbines, prediction and modeling";
-
Swiss KTI/CTI research projects with GE Renewable Energy (anc. ALSTOM Hydro), Birr, ANDRITZ Hydro, Kriens, FMV, Sion, Groupe E, Granges-Paccot, Power Vision engineering, Ecublens and SULZER Pumps, Winterthur.
-
ETH Domain, HYDRONET Project for the Competence Center Energy and Mobility, PSI Villingen.
Furthermore, he is involved in scientific expertise and independent contractual experimental validations of turbines and pump turbines performances for the main hydropower plants in the world. In recognition for his work as Convenor of the TC4 working group of experts in editing the IEC 60193 standard he received the "IEC 1906 Award" from the International Electrotechnical Commission. François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Vincenzo SavonaVincenzo Savona studied physics in Pisa at the Scuola Normale Superiore and the University of Pisa, prior to completing his PhD at the EPFL's Institute of Theoretical Physics. Subsequently he did post-doctoral work, first at the EPFL and then in the physics department of the Humboldt University of Berlin. In 2002, he returned to the EPFL to create his own research group, receiving a "professeur boursier" fellowship from the Swiss National Science Foundation. In 2006, he was appointed tenure-track assistant professor at the EPFL and joined the NCCR for Quantum Photonics. In 2010 he was appointed associate professor. Currently he directs the Laboratory of Theoretical Physics of Nanosystems.
Horst VogelHorst Vogel est né en 1948 à Würzburg, Allemagne. Après ses études en chimie, il obtient le diplôme de chimie en 1974 de l'Université de Würzburg.Il entreprend ensuite un travail de doctorat au Max-Planck Institut für Biophysikalische Chemie de Göttingen, et obtient en 1978 le grade de docteur ès sciences de l'Université de Göttingen. De 1978 à 1983 il effectue des recherches au Max-Planck Institut für Biologie à Tübingen et en 1984, il rejoint le Biocentre à Bâle où il travaille jusqu'en 1989, effectuant une année au Karolinska Institute à Stockholm. En 1989, Horst Vogel rejoint l'institut de chimie physique de l'EPFL où il dirige un groupe travaillant dans les domaines de la biophysique et de la bioélectronique.
Depuis le 1er octobre 1994 il est profeseur en chimie physique des polymères et membranes au Département de chimie de EPFL. Ses intérêts de recherche sont l'étude de la structure et de la dynamique de récepteurs membranaires et l'auto-assemblage des biomolécules aux interfaces pour développer de nouveaux biocapteurs dans le domaine de micro- et nanotechnologie. Il enseigne les sciences du vivant, la biophysique et biochimie, et des chapitres concernant la biotechnologie.
Dipl. in Chemistry1974-Univ. Würzburg, DE
Ph.D.-1978-MPI für Biophys. Chemie, Göttingen, DE