Muon-catalyzed fusionMuon-catalyzed fusion (abbreviated as μCF or MCF) is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. It is one of the few known ways of catalyzing nuclear fusion reactions. Muons are unstable subatomic particles which are similar to electrons but 207 times more massive. If a muon replaces one of the electrons in a hydrogen molecule, the nuclei are consequently drawn 196 times closer than in a normal molecule, due to the reduced mass being 196 times the mass of an electron.
Plasma-facing materialIn nuclear fusion power research, the plasma-facing material (or materials) (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel. Plasma-facing materials for fusion reactor designs must support the overall steps for energy generation, these include: Generating heat through fusion, Capturing heat in the first wall, Transferring heat at a faster rate than capturing heat.
Lockheed Martin Compact Fusion ReactorThe Lockheed Martin Compact Fusion Reactor (CFR) is a fusion power project at Lockheed Martin’s Skunk Works. Its high-beta configuration, which implies that the ratio of plasma pressure to magnetic pressure is greater than or equal to 1 (compared to tokamak designs' 0.05), allows a compact design and expedited development. The project was active between 2010 and 2019, after that date there have been no updates and it appears the division has shut down.
Classical diffusionClassical diffusion is a key concept in fusion power and other fields where a plasma is confined by a magnetic field within a vessel. It considers collisions between ions in the plasma that causes the particles to move to different paths and eventually leave the confinement volume and strike the sides of the vessel. The rate of diffusion scales with 1/B2, where B is the magnetic field strength, implies that confinement times can be greatly improved with small increases in field strength.
Electron cyclotron resonanceElectron cyclotron resonance (ECR) is a phenomenon observed in plasma physics, condensed matter physics, and accelerator physics. It happens when the frequency of incident radiation coincides with the natural frequency of rotation of electrons in magnetic fields. A free electron in a static and uniform magnetic field will move in a circle due to the Lorentz force. The circular motion may be superimposed with a uniform axial motion, resulting in a helix, or with a uniform motion perpendicular to the field (e.
Interchange instabilityThe interchange instability, also known as the Kruskal–Schwarzchild instability or flute instability, is a type of plasma instability seen in magnetic fusion energy that is driven by the gradients in the magnetic pressure in areas where the confining magnetic field is curved. The name of the instability refers to the action of the plasma changing position with the magnetic field lines (i.e. an interchange of the lines of force in space) without significant disturbance to the geometry of the external field.
Burning plasmaIn plasma physics, a burning plasma is one in which most of the heating comes from fusion reactions involving thermal plasma ions. The Sun and similar stars are a burning plasma, and in 2020 the National Ignition Facility achieved burning plasma. A closely related concept is that of an ignited plasma, in which all of the heating comes from fusion reactions. Sun In the Sun and other similar stars, those fusion reactions involve hydrogen ions.
Levitated dipoleA levitated dipole is a type of nuclear fusion reactor design using a superconducting torus which is magnetically levitated inside the reactor chamber. The name refers to the magnetic dipole that forms within the reaction chamber, similar to Earth's or Jupiter's magnetospheres. It is believed that such an apparatus could contain plasma more efficiently than other fusion reactor designs. The concept of the levitated dipole as a fusion reactor was first theorized by Akira Hasegawa in 1987.
FusorA fusor is a device that uses an electric field to heat ions to conditions that allow nuclear fusion. The machine induces a voltage between two metal cages, inside a vacuum. Positive ions fall down this voltage drop, building up speed. If they collide in the center, they can fuse. This is one kind of an inertial electrostatic confinement device – a branch of fusion research. A Farnsworth–Hirsch fusor is the most common type of fusor. This design came from work by Philo T. Farnsworth in 1964 and Robert L.
Nuclear fusion–fission hybridHybrid nuclear fusion–fission (hybrid nuclear power) is a proposed means of generating power by use of a combination of nuclear fusion and fission processes. The basic idea is to use high-energy fast neutrons from a fusion reactor to trigger fission in non-fissile fuels like U-238 or Th-232. Each neutron can trigger several fission events, multiplying the energy released by each fusion reaction hundreds of times. As the fission fuel is not fissile, there is no self-sustaining chain reaction from fission.