Implicit surfaceIn mathematics, an implicit surface is a surface in Euclidean space defined by an equation An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z. The graph of a function is usually described by an equation and is called an explicit representation. The third essential description of a surface is the parametric one: where the x-, y- and z-coordinates of surface points are represented by three functions depending on common parameters .
EquidistantA point is said to be equidistant from a set of objects if the distances between that point and each object in the set are equal. In two-dimensional Euclidean geometry, the locus of points equidistant from two given (different) points is their perpendicular bisector. In three dimensions, the locus of points equidistant from two given points is a plane, and generalising further, in n-dimensional space the locus of points equidistant from two points in n-space is an (n−1)-space.
Smooth structureIn mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for This gives a natural equivalence relation on the set of smooth atlases.
Linear complex structureIn mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space. Every complex vector space can be equipped with a compatible complex structure, however, there is in general no canonical such structure. Complex structures have applications in representation theory as well as in complex geometry where they play an essential role in the definition of almost complex manifolds, by contrast to complex manifolds.
Differential geometry of surfacesIn mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface.
Brianchon's theoremIn geometry, Brianchon's theorem is a theorem stating that when a hexagon is circumscribed around a conic section, its principal diagonals (those connecting opposite vertices) meet in a single point. It is named after Charles Julien Brianchon (1783–1864). Let be a hexagon formed by six tangent lines of a conic section. Then lines (extended diagonals each connecting opposite vertices) intersect at a single point , the Brianchon point. The polar reciprocal and projective dual of this theorem give Pascal's theorem.
Euclidean planeIn mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted E2. It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane.
Pushforward (differential)In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of at to the tangent space of at , . Hence it can be used to push tangent vectors on forward to tangent vectors on .
Incidence geometryIn mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure.
Hyperbolic manifoldIn mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman.