Lyesse LalouiDirector, EPFL Soil Mechanics LaboratoryDirector, EPFL Civil Engineering SectionEditor in Chief, ElsevierMember of the Swiss Academy of Engineering SciencesFounding Partner, Geoeg & MeduSoilActive in academic research in the following institutions: Lausanne, EPFL, Durham, Duke University, Nanjing, Hohai UniversityProfessor Lyesse Laloui teaches at EPFL, where he directs the Soil Mechanics Laboratory as well as the Civil Engineering Section. He is a founding partner of the international engineering company Geoeg, and the start-up MeduSoil. In addition, he is an adjunct professor at Duke University, USA and an advisory professor at Hohai University, China as well as honorary director of the International Joint Research Center for Energy Geotechnics in China.He is the recipient of an Advance ERC grant for his BIO-mediated GEO-material Strengthening project. Editor in Chief of the Elsevier Geomechanics for Energy and the Environment journal, he is a leading scientist in the field of geomechanics and geo-energy. He has written and edited 13 books and published over 320 peer reviewed papers; his work is cited more than 6000 times with an h-index of 39 (Scopus). Two of his papers are among the top 1% in the academic field of Engineering. He has given keynote and invited lectures at more than 40 leading international conferences. He has received several international awards (IACMAG, RM Quigley, Roberval) and delivered honorary lectures (Vardoulakis, Minnesota; G.A. Leonards, Purdue; Kersten, Minnesota). He recently acted as the Chair of the international evaluation panel of Civil and Geological Engineering R&D Units of Portugal.Nov. 2019 For further information visit www.epfl.ch/labs/lms/ ; geoeg.net ; medusoil.com David Andrew BarryResearch InterestsSubsurface hydrology, constructed wetlands, ecological engineering, in particular contaminant transport and remediation of soil and groundwater; more generally, models of hydrological and vadose zone processes; application of mathematical methods to hydrological processes; coastal zone sediment transport, aquifer-coastal ocean interactions; hydrodynamics and modelling of lakes.
Dimitrios TerzisDimitrios Terzis received his Civil Engineering diploma from the Aristotle University of Thessaloniki, Greece in 2014, having spent a year in the ESTP, Paris as an exchange student. In 2017, he graduated with a doctoral degree (PhD) in Mechanics from the Swiss Federal Institute of Technology, Lausanne (EPFL). His research, funded by the Swiss National Science Foundation (grant 200021_140246) and a scholarship of Academic Excellence of the Swiss Federal Government (No. 2014.0276), focused on the crystallisation of calcium carbonate in soils. With his thesis, Dimitrios contributed in the fields of advanced material characterisation through microscopy and X-Ray tomography techniques, predictive modelling and full-scale geotechnical applications. He’s the co-inventor of three EPFL patents and the author of more than 10 peer-reviewed publications with an h-index of 6 (Scopus, as of 08/2020). He is the recipient of grants and awards which sum up to over CHF 1 Mn, among which an EPFL Innogrant Fellowship (2018), a Swiss National Science foundation BRIDGE grant (2019) and an Innobooster grant from the Gebert rüf Stiftung. Since 2019 he is the principal lecturer and responsible for the course Innovation for construction and the environment which is part of EPFL's Master's program in Civil Engineering.
Jean-François MolinariProfessor J.F. Molinari is the director of the Computational Solid Mechanics Laboratory (http://lsms.epfl.ch) at EPFL, Switzerland. He holds an appointment in the Civil Engineering institute, which he directed from 2013 to 2017, and a joint appointment in the Materials Science institute. He started his tenure at EPFL in 2007, and was promoted to Full Professor in 2012. He is currently an elected member of the Research Council of the Swiss National Science Foundation in Division 2 (Mathematics, Natural and Engineering Sciences), and co editor in chief of the journal Mechanics of Materials. J.F. Molinari graduated from Caltech, USA, in 2001, with a M.S. and Ph.D. in Aeronautics. He held professorships in several countries besides Switzerland, including the United States with a position in Mechanical Engineering at the Johns Hopkins University (2000-2006), and France at Ecole Normale Supérieure Cachan in Mechanics (2005-2007), as well as a Teaching Associate position at the Ecole Polytechnique de Paris (2006-2009). The work conducted by Prof. Molinari and his collaborators takes place at the frontier between traditional disciplines and covers several length scales from atomistic to macroscopic scales. Over the years, Professor Molinari and his group have been developing novel multiscale approaches for a seamless coupling across scales. The activities of the laboratory span the domains of damage mechanics of materials and structures, nano- and microstructural mechanical properties, and tribology. Brice Tanguy Alphonse LecampionI am currently an assistant Professor and the head of the Geo-Energy Lab - Gaznat Chair on GeoEnergy at Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Prior to joining EPFL, I have worked for Schlumberger in research and development from 2006 until May 2015 - serving in a variety of roles ranging from project manager to principal scientist in both Europe and the United States. I received my PhD in mechanics from Ecole Polytechnique, France in 2002 and worked as a research scientist in the hydraulic fracturing research group of CSIRO division of Petroleum resources (Melbourne, Australia) from 2003 to 2006. During my time in Schlumberger R&D, I have worked on problems related to the integrity of deep wells, large scale monitoring of reservoir deformation and more specifically on the stimulation of oil and gas wells by hydraulic fracturing. My current research interests cover hydraulic fracture mechanics, mechanics of porous media and dense suspensions flow.
Johan Alexandre Philippe GaumeI started my scientific career in 2008 at the Grenoble University in the IRSTEA laboratory where I did my master's thesis on the rheology of dense granular materials using the discrete element method. In the same lab, I followed with a PhD on the numerical modeling of the release depth of extreme avalanches using a combined mechanical-statistical approach and spatial extreme statistics. In 2013 I obtained a postdoc position at the WSL Institute for Snow and Avalanche Research SLF in Davos where I was in charge of developing and applying numerical models to improve the evaluation of avalanche release conditions and thus avalanche forecasting. While my PhD was mostly theoretical and numerical, my postdoc in Davos allowed me to gain a practical expertise by participating in laboratory and field experiments which helped to validate the models I develop. In 2016, I was awarded a SNF grant to work as a research and teaching associate in CRYOS at EPFL on the multiscale modeling of snow and avalanche processes. I developed discrete approaches to model snow micro-structure deformation and failure in order to evaluate constitutive snow models to be used at a larger scale in continuum models. I also developed numerical models for wind-driven snow transport. In 2017, I was a Visiting Scholar at UCLA to work on a Material Point Method (MPM) to simulate both the initiation and propagation of snow avalanches in a unified manner. The UCLA MPM model was initially developed for the Disney movie "Frozen" and has been modified and enriched based on Critical State Soil Mechanics to model the release and flow of slab avalanches. The results of this collaboration have been published in Nature Communications. In 2018, I was awarded the SNF Eccellenza Professorial Fellowship and became professor at EPFL and head of SLAB, the Snow and Avalanche Simulation Laboratory. At SLAB, we study micro-mechanical failure and fracture propagation of porous brittle solids, with applications in snow slab avalanche release. We also simulate avalanche dynamics and flow regime transitions over complex 3D terrain through the development of new models (depth-resolved and depth-averaged) based on MPM.In 2020, I obtained a SPARK grant to develop a new approach to simulate and better understand complex process chains in gravitational mass movements, including permafrost instabilities, rock, snow and ice avalanches and transitions to debris flows.
Christophe AnceyChristophe Ancey has both a PhD and an engineering degree granted by the Ecole Centrale de Paris and the Grenoble National Polytechnic Institute. Trained as a hydraulics engineer, he did his doctoral work under the supervision of Pierre Evesque from 1994 to 1997 on rheology of granular flows in simple shearing. He was recruited in 1998 as a researcher in rheology at the Cemagref as part of the Erosion Protection team directed by Jean-Pierre Feuvrier, which has since become the laboratoire "Storm Erosion, Snow and Avalanche Laboratory". Parallel to this research activity, with Claude Charlier He set up a consulting firm for engineering contracting called Toraval (www.toraval.fr), which has become the major player in the avalanche field in France. Since 2004, He is a fluid-mechanics professor at EPFL and he is the director of the Environmental Hydraulics Laboratory.
He is associate editor of Water Resources Research, one of the leading journal in the field. Aurèle ParriauxAurèle Parriaux studied geology at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. He obtained his Ph.D. in hydrogeology and followed several postgraduate courses in hydrogeology, operational hydrology and geotechnics. He acquired a wide experience in engineering geology in the fields of motorway construction, geological hazards, underground water and geomaterials prospecting as well as the management of natural resources.
In 1991, he was appointed full Professor of Engineering Geology at EPFL and presently he is head of the Engineering and Environmental Geology Laboratory (GEOLEP) at the same institute. He leads a research team of about twenty people specializing in the fields of geological hazards and underground resources.
Professor Parriaux has significant teaching responsibilities. He teaches geology to students in 'Civil Engineering' and 'Environmental Sciences and Engineering'. Moreover, he teaches Engineering Geology at the Universitiy of Lausanne.
Parallel to his research and teaching, Aurèle Parriaux carries out expert appraisals in various fields of engineering and environmental geology. In particular, the recent appraisal of the compatibility between construction of tunnels and protection of groundwater resources.
Since the creation of the new School of Architecture, Civil and Environmental Engineering (ENAC) at the Swiss Federal Institute of Technology in Lausanne, he participates in the teaching related to territory and landscape into which he brings the geological and geomorphologic component.
Aurèle Parriaux is active in several international organizations. He was chairman of the Swiss Hydrogeological Society for six years. From 2001 to 2006 he was Director of the Civil Engineering Section of the Swiss Federal Institute of Technology of Lausanne.
In 2006, he published his book "Géologie: bases pour l'ingénieur". The second edition of this successful textbook has been published in 2009. In competition with 105 scientific books, Géologie : bases pour l'ingénieur received the Roberval Prize in 2007. The publisher CRC Press/Balkema, member of the Taylor & Francis Group, publishes an English translation of the book (Geology: basics for Engineers, 2009).
In December 2008, Prof. Parriaux was nominated Chevalier of the Order of Academic Palms by the Prime Minister of the Republic of France.
In September 2011, he left the EPFL to dedicate his time to being an independent expert. Prof. Parriaux is currently based at Chemin de Crêt de Plan 103 in La Conversion CH-1093 (www.parriauxgeo.ch). He is continuing his collaboration with EPFL, especially on the DEEP CITY Project and on landslide research.