Code rateIn telecommunication and information theory, the code rate (or information rate) of a forward error correction code is the proportion of the data-stream that is useful (non-redundant). That is, if the code rate is for every k bits of useful information, the coder generates a total of n bits of data, of which are redundant. If R is the gross bit rate or data signalling rate (inclusive of redundant error coding), the net bit rate (the useful bit rate exclusive of error correction codes) is .
Systematic codeIn coding theory, a systematic code is any error-correcting code in which the input data is embedded in the encoded output. Conversely, in a non-systematic code the output does not contain the input symbols. Systematic codes have the advantage that the parity data can simply be appended to the source block, and receivers do not need to recover the original source symbols if received correctly – this is useful for example if error-correction coding is combined with a hash function for quickly determining the correctness of the received source symbols, or in cases where errors occur in erasures and a received symbol is thus always correct.
Conditional entropyIn information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as . The conditional entropy of given is defined as where and denote the support sets of and . Note: Here, the convention is that the expression should be treated as being equal to zero. This is because .
Joint entropyIn information theory, joint entropy is a measure of the uncertainty associated with a set of variables. The joint Shannon entropy (in bits) of two discrete random variables and with images and is defined as where and are particular values of and , respectively, is the joint probability of these values occurring together, and is defined to be 0 if . For more than two random variables this expands to where are particular values of , respectively, is the probability of these values occurring together, and is defined to be 0 if .