Self-supervised learningSelf-supervised learning (SSL) is a paradigm in machine learning for processing data of lower quality, rather than improving ultimate outcomes. Self-supervised learning more closely imitates the way humans learn to classify objects. The typical SSL method is based on an artificial neural network or other model such as a decision list. The model learns in two steps. First, the task is solved based on an auxiliary or pretext classification task using pseudo-labels which help to initialize the model parameters.
Graph neural networkA graph neural network (GNN) is a class of artificial neural networks for processing data that can be represented as graphs. In the more general subject of "geometric deep learning", certain existing neural network architectures can be interpreted as GNNs operating on suitably defined graphs. Convolutional neural networks, in the context of computer vision, can be seen as a GNN applied to graphs structured as grids of pixels. Transformers, in the context of natural language processing, can be seen as GNNs applied to complete graphs whose nodes are words in a sentence.
Vision transformerA Vision Transformer (ViT) is a transformer that is targeted at vision processing tasks such as . Transformers found their initial applications in natural language processing (NLP) tasks, as demonstrated by language models such as BERT and GPT-3. By contrast the typical image processing system uses a convolutional neural network (CNN). Well-known projects include Xception, ResNet, EfficientNet, DenseNet, and Inception. Transformers measure the relationships between pairs of input tokens (words in the case of text strings), termed attention.
AutoencoderAn autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning). An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction. Variants exist, aiming to force the learned representations to assume useful properties.
Computer chessComputer chess includes both hardware (dedicated computers) and software capable of playing chess. Computer chess provides opportunities for players to practice even in the absence of human opponents, and also provides opportunities for analysis, entertainment and training. Computer chess applications that play at the level of a chess master or higher are available on hardware from supercomputers to smart phones. Standalone chess-playing machines are also available.
Mirror descentIn mathematics, mirror descent is an iterative optimization algorithm for finding a local minimum of a differentiable function. It generalizes algorithms such as gradient descent and multiplicative weights. Mirror descent was originally proposed by Nemirovski and Yudin in 1983. In gradient descent with the sequence of learning rates applied to a differentiable function , one starts with a guess for a local minimum of , and considers the sequence such that This can be reformulated by noting that In other words, minimizes the first-order approximation to at with added proximity term .
Elo rating systemThe Elo rating system is a method for calculating the relative skill levels of players in zero-sum games such as chess. It is named after its creator Arpad Elo, a Hungarian-American physics professor. The Elo system was invented as an improved chess-rating system over the previously used Harkness system, but is also used as a rating system in association football, American football, baseball, basketball, pool, table tennis, various board games and esports, and more recently large language models.
Wasserstein GANThe Wasserstein Generative Adversarial Network (WGAN) is a variant of generative adversarial network (GAN) proposed in 2017 that aims to "improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches". Compared with the original GAN discriminator, the Wasserstein GAN discriminator provides a better learning signal to the generator. This allows the training to be more stable when generator is learning distributions in very high dimensional spaces.
Hugging FaceHugging Face, Inc. is an American company that develops tools for building applications using machine learning. It is most notable for its transformers library built for natural language processing applications and its platform that allows users to share machine learning models and datasets. The company was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.
Diffusion modelIn machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space. In computer vision, this means that a neural network is trained to denoise images blurred with Gaussian noise by learning to reverse the diffusion process.