John BotsisJohn (Ioannis) Botsis obtained his diplôme in civil engineering at the University of Patras, Greece in 1979. He continued his education at Case Institute of Technology in Cleveland Ohio/USA, where he received his MS and Ph.D. in 1984. After two years at the research center for national defense in Athens he was nominated assistant professor at the University of Illinois in Chicago, associate in 1991 and full professor in 1995. In 1996, he was nominated professor of solids and structural mechanics at the EPFL. At EPFL he teaches mechanics of structures and mechanics of continuous media´ at the bachelors level and Fracture mechanics at the masters and doctoral levels. His research covers the mechanics of solids and structures, fracture mechanics and micromechanics of polymers, metals and their composites as well as biomechanics. He is also actively involved in full-filed optical methods for surface strain measurements as well as internal strain measurements using fiber Bragg grating sensors, aimed at characterizing micromechanics of fracture, residual strains and strain distribution in composite laminates for structural monitoring. Funding for his research comes from the Swiss National Science Foundation, State Secretariat for Education and Research and Swiss industry. He retired on February 28, 2020.
Dimitrios LignosProf. Lignos joined the École Polytechnique Féderale de Lausanne (EPFL) in 2016 from McGill University in Canada where he was a tenured Associate Professor and a William Dawson Scholar for Infrastructure Resilience. He holds a diploma (National Technical University of Athens, NTUA, 2003), M.S. (Stanford University, 2004) and Ph.D. (Stanford University, 2008). In addition, he was a post-doctoral scientist at Stanford University (2009) and in Kyoto University (2010). Prof. Lignos teaches graduate and undergraduate courses in seismic design, nonlinear behaviour of steel and composite structures as well as supplemental damping systems, Structural Stability, Nonlinear Analysis and Performance-based Earthquake Engineering. His awards for teaching, research and service in Civil Engineering include the 2011 Outstanding Teaching Award (Faculty of Engineering, McGill University), as well as the Outstanding reviewer (2012, 2013) award from ASCE, the 2013 State-of-the-Art in Civil Engineering Award by ASCE and the 2014 Christophe Pierre Award for Research Excellence - Early Career. Just recently, he received the 2019 Walter L. Huber Civil Engineering Research Prize from ASCE for significant contributions in developing state of the art methods to simulate extreme limit states in steel structures.Prof. Lignos is a member of ASCE and the Earthquake Engineering Research Institute. He acts as an Associate Editor for Metal Structures and Seismic Effects of the ASCE Journal of Structural Engineering. He joined the Editorial Board of Earthquake Spectra and Earthquake Engineering and Structural Dynamics International journals. He serves as an acting member of the CEN/TC 250/SC 8/WG 2 and has been selected as a member of the Project Team (PT2) for the Eurocode 8-Part 1 Current Revisions for Steel and Composite Structures. He is also a member of the Canadian Standards Association (CSA) S16 technical committee for Steel Structures. Prof. Lignos is involved as a NEHRP consultant in numerous research-to-practice projects related to the behaviour and nonlinear modelling and analysis of structures applicable to the engineering practice through the Applied Technology Council (ATC). Detailed Curriculum Vitae (last update September 2018)
Michel RappazAfter a PhD in solid state physics (1978) at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and a post-doc at Oak Ridge National Laboratory, Michel Rappaz joined the Institute of Materials of EPFL in 1981. After two years in an engineering company, he came back to EPFL in 1984 where he was nominated Adjunct Professor in 1990 and Full Professor in 2003. He retired from EPFL in 2015 and is now Emeritus Professor and independent consultant for several industries and research centres.
His main interests are in phase transformations and solidification, in particular the coupling of macroscopic aspects of heat and mass transfer with microscopic aspects of microstructure and defect formation. Among his diverse achievements, one can mention in particular the development of cellular automata for grain structure predictions and of granular models for hot tearing formation in castings, the coupling of Finite Element method with microscopic models of nucleation and growth, the application of the phase field method to the understanding of various microstructures, the discovery of quasicrystal mediated-nucleation in alloys, and many other studies both fundamental at the microstructure-defect level and more applied at the level of processes.
Some of the software developments have been commercialized by a spin-off company founded by his group in 1991 (Calcom SA), now part of the French company ESI. Michel Rappaz initiated in 1992 an annual postgraduate course on solidification which has been attended by more than 900 participants from all over the world. He is presently collaborating closely with another spin-off company started from his group, Novamet SàrL.
Michel Rappaz has received several awards, in particular the Mathewson co-author award (1994) and author award (1997) of the American Mineral, Metals and Materials Society (TMS), the Koerber foundation award jointly with Profs Y. Bréchet and M. Asbby (1996), the Sainte-Claire Deville Medal (1996) and the Grand Medal (2011) from the French Materials Society, the Bruce Chalmers Award of TMS (2002), the Mc Donald Memorial Lecture award of Canada (2005), the FEMS European Materials Gold Medal (2013) and the Brimacombe Prize of TMS (2015). He is a highly-cited author of ISI, a fellow of ASM, IOP and TMS, and has co-authored more than 200 publications and two books.
Christophe BallifChristophe Ballif is director of the Phototovoltaics and Thin Film Electronics Laboratoryb) (PV-Lab at the institute of microengineering (IMT) in Neuchâtel (part of the EPFL since 2009). The lab focus is on the science and technology of high efficiency heterojunction crystalline cells,so-called passivating contacts for solar cells, multi-junction solar cells include novel generation Perovskite on innovative optical high speed detector and on various macroelectronics application. It also deals with energy management with a focus on integration of solar electricity into the energy system. The PV-Lab has strongly contributed to technology transfer and industrialization of novel devices and full technology with numerous companies. Christophe Ballif graduated as a physicist from the EPFL in 1994, where he also obtained in 1998 his Phd degree working on novel PV materials. He accomplished his postdoctoral research at NREL (Golden, US) on compound semiconductor solar cells (CIGS and CdTe). He worked then at the Fraunhofer ISE (Ge) on crystalline silicon photovoltaics (monocrystalline and multi-crystalline) until 2003 and then at the EMPA in Thun (CH) before becoming full professor at the University of Neuchâtel IMT in 2004, taking over the chair of Prof. A. Shah. Since 2013, C.Ballif is also the director of the new CSEM PV-Center, also located in Neuchâtel. The CSEM PV-Center is focussing more on industrialisation and technology transfer in the field of solar energy, including solar electricity management and storage. At the core of the CSEM PV-center activities lies several "pilot lines" for various kinds of solar cells manufacturing, with a focus coating technologies, wet chemistry processes for crystalline silicon, metalisation techniques for solar cells, and a platform for developing "ideal packaging solutions and polymers" for PV modules. In addition, joined facitilites between CSEM and EPFL of over 800 m2 are available for modules manufacturing, measuring and accelerated aging. CSEM PV-center has also full team dedicated to storage and energy systems and operates a joined center with BFH in Biel for research on electrochemical storage. He (co-) authored over 500 journal and technical papers, as well as several patents. He is an elected member of the SATW, member of the scientific council of the Swiss AEE, and member of the board of the EPFL Energy center. In 2016, he recieved the Becquerel prize for his contributions to the field of high efficiency photovoltaics.
Dominique PiolettiDominique Pioletti received his Master in Physics from the Swiss Federal Institute of Technology Lausanne (EPFL) in 1992. He pursued his education in the same Institution and obtained his PhD in biomechanics in 1997. He developed original constitutive laws taking into account viscoelasticity in large deformations. Then he spent two years at UCSD as post-doc fellow acquiring know-how in cell and molecular biology. He was interested in particular to gene expression of bone cells in contact to orthopedic implant. In April 2006, Dominique Pioletti was appointed Assistant Professor tenure-track at the EPFL and is director of the Laboratory of Biomechanical Orthopedics. His research topics include biomechanics and tissue engineering of musculo-skeletal tissues; mechano-transduction in bone; development of orthopedic implant as drug delivery system. Since 2013, he has been promoted to the rank of Associate Professor.
Nava SetterNava Setter completed MSc in Civil Engineering in the Technion (Israel) and PhD in Solid State Science in Penn. State University (USA) (1980). After post-doctoral work at the Universities of Oxford (UK) and Geneva (Switzerland), she joined an R&D institute in Haifa (Israel) where she became the head of the Electronic Ceramics Lab (1988). She began her affiliation with EPFL in 1989 as the Director of the Ceramics Laboratory, becoming Full Professor of Materials Science and Engineering in 1992. She had been Head of the Materials Department in the past and more recently has served as the Director of the Doctoral School for Materials.
Research at the Ceramics Laboratory, which Nava Setter directs, concerns the science and technology of functional ceramics focusing on piezoelectric and related materials: ferroelectrics, dielectrics, pyroelectrics and also ferromagnetics. The work includes fundamental and applied research and covers the various scales from the atoms to the final devices. Emphasis is given to micro- and nano-fabrication technology with ceramics and coupled theoretical and experimental studies of the functioning of ferroelectrics.
Her own research interests include ferroelectrics and piezoelectrics: in particular the effects of interfaces, finite-size and domain-wall phenomena, as well as structure-property relations and the pursuit of new applications. The leading thread in her work over the years has been the demonstration of how basic or fundamental concepts in materials - particularly ferroelectrics - can be utilized in a new way and/or in new types of devices. She has published over 450 scientific and technical papers.
Nava Setter is a Fellow of the Swiss Academy of Technical Sciences, the Institute of Electrical and Electronic Engineers (IEEE), and the World Academy of Ceramics. Among the awards she received are the Swiss-Korea Research Award, the ISIF outstanding achievement award, and the Ferroelectrics-IEEE recognition award. In 2010 her research was recognized by the European Union by the award of an ERC Advanced Investigator Grant. Recently she received the IEEE-UFFC Achievement Award (2011),the W.R. Buessem Award(2011), the Robert S. Sosman Award Lecture (American Ceramics Society) (2013), and the American Vacuum Society Recognition for Excellence in Leadership (2013).
Brice Tanguy Alphonse LecampionI am currently an assistant Professor and the head of the Geo-Energy Lab - Gaznat Chair on GeoEnergy at Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Prior to joining EPFL, I have worked for Schlumberger in research and development from 2006 until May 2015 - serving in a variety of roles ranging from project manager to principal scientist in both Europe and the United States. I received my PhD in mechanics from Ecole Polytechnique, France in 2002 and worked as a research scientist in the hydraulic fracturing research group of CSIRO division of Petroleum resources (Melbourne, Australia) from 2003 to 2006. During my time in Schlumberger R&D, I have worked on problems related to the integrity of deep wells, large scale monitoring of reservoir deformation and more specifically on the stimulation of oil and gas wells by hydraulic fracturing. My current research interests cover hydraulic fracture mechanics, mechanics of porous media and dense suspensions flow.
Paul MuraltPaul Muralt received a diploma in experimental physics in 1978 at the Swiss Federal Institute of Technology ETH in Zurich. He accomplished his Ph.D. thesis in the field of commensurate-incommensurate phase transitions at the Solid State Laboratory of ETH. In the years 1984 and 1985 he held a post doctoral position at the IBM Research Laboratory in Zurich where he pioneered the application of scanning tunneling microscopy to surface potential imaging. In 1987, after a stay at the Free University of Berlin, he joined the Balzers group in Liechtenstein. He specialized in sputter deposition techniques, and managed since 1991 a department for development and applications of Physical Vapor Deposition and PECVD processes. In 1993, he joined the Ceramics Laboratory of EPFL in Lausanne. AS group leader for thin films and MEMS devices, he specialized in piezoelectric and pyroelectric MEMS with mostly Pb(Zr,Ti)O3 and AlN thin film. His research interests are in thin film growth in general, and more specifically in property assessment of small ferroelectric structures, in integration issues of ferroelectric and other polar materials, property-microstructure relationships, and applications of polar materials in semiconductor and micro-electro-mechanical devices. More recently he extended his interests to oxide thin films of ionic conductors. The focus in piezoelectric thin films was directed towards AlN-ScN alloys. He gives lectures in thin film processing, micro fabrication, and surface analysis. He authored or co-authored more than 230 scientific articles. He became Fellow of IEEE in 2013. In 2005, he received an outstanding achievement award at the International Symposium on Integrated Ferroelectrics (ISIF), and in 2016 the B.C. Sawyer Memorial award.
Chairman of the International Workshops on Piezoelectric MEMS(http://www.piezomems2011.org/)