Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
John Christopher PlummerÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL), Lausanne, Switzerland 1989-
Collaborateur Scientifique/Chargé de Cours (Lecturer) (1998-)
Privat Docent (1998)
Laboratoire de Technologie des Composites et Polymères (LTC) (2000-)
Laboratoire de Polymères (LP) (1998-2000)
UNIVERSITY OF MICHIGAN (UMICH), Ann Arbor, MI, USA 1995-1996
Visiting Scientist, Department of Materials Science and Engineering (DMSE)
UNIVERSITY OF CAMBRIDGE, Cambridge, UK 1986-1989
Research Assistant, Physics and Chemistry of Solids Group (PCS), Department of Physics
UNIVERSITY OF CAMBRIDGE, Cambridge, UK, Department of Materials 1986
PhD, "Flux Pinning in Type-II Superconductors"
UNIVERSITY OF CAMBRIDGE, Cambridge, UK, 1982
BA/MA Honours Degree in Natural Sciences
Awards
Prix R&R Haenny, 2007, DuPont Research Award, 2003, Commendation, British Polymer Group, Reading 1989
RECENT PUBLICATIONS
Ramier J, Da Costa N, Plummer CJG, Leterrier Y, Manson JAE, Eckert R, Gaudiana R, Cohesion and adhesion of nanoporous TiO2 coatings on titanium wires for photovoltaic applications, Thin solid films, 516, 1913 (2008).
Ramier J, Plummer CJG, Leterrier Y, Manson JAE, Eckert B, Gaudiana R, Mechanical integrity of dye-sensitized photovoltaic fibers, Renewable energy, 33, 314 (2008).
- Houphouet-Boigny C, Plummer CJG, Wakeman MD, Manson JAE, Hybrid glass fiber-reinforced thermoplastic nanocomposites, J. Thermoplast. Comp. Mater., 21, 103 (2008).
Ternat C, Ouali L, Sommer H, Fieber W, Velazco MI, Plummer CJG, Kreutzer G, Klok HA, Manson JAE, Herrmann, Investigation of the Release of Bioactive Volatiles from Amphiphilic Multiarm Star-Block Copolymers by Thermogravimetry and Dynamic Headspace Analysis, Macromolecules 41(19), 7079 (2008).
Ruggerone, R., Plummer, C.J.G., Negrete Herrera, N., Bourgeat-Lami, E., Månson, J-EA, Mechanical properties of highly filled latex-based polystyrene/laponite nanocomposites, Solid State Phenomena Vol. 151, 30 (2009).
Plummer, CJG, Dalle Vacche, S, Houphouët-Boigny, C, Michaud, V, Månson, JAE, Hybrid Glass Mat Reinforced Polypropylene-Montmorillonite Nanocomposites, Solid State Phenomena Vol. 151, 60 (2009).
Ruggerone, R., Plummer, C.J.G., Negrete Herrera, N., Bourgeat-Lami, E., Månson, J-EA, Highly filled polystyrenelaponite nanocomposites prepared by emulsion polymerization, European Polm. J. 45, 621 (2009).
Ruggerone, R., Plummer, C.J.G., Negrete Herrera, N., Bourgeat-Lami, E., Månson, J-EA, Fracture mechanisms in polystyrene/laponite nanocomposites prepared by emulsion polymerization, Engineering Fracture Mechanics 76, 2846 (2009)
Clausen P., Andreoni W., Curioni A., Hughs E., Plummer C.J.G. Adsorption of low-molecular-weight molecules on the surface of a sodium smectite clay: an ab initio study, Journal of Physical Chemistry C 113, 12293 (2009).
Clausen P., Andreoni W., Curioni A., Hughs E., Plummer C.J.G., Water adsorption on a sodium smectite clay surface: an ab initio study, Journal of Physical Chemistry C 113, 15218 (2009).
Molberg, M, Leterrier, Y., Plummer, C.J.G., Walder, C., Löwe, C., Opris, D.M., Nüesch, F.A., Bauer, S., Månson, J.-A.E., Frequency dependent dielectric and mechanical behaviour of elastomers for actuator applications, J. Appl. Phys. 106, 054112 (2009)
Clausen P., Signorelli M., Schreiber A., Hughes E., Plummer CJG, Fessas D., Schiraldi A., Månson E. J.-A., Equilibrium desorption isotherms of water, ethanol, ethyl acetate and toluene on a sodium smectite clay, Journal of Thermal Analysis and Calorimetry 98, 833 (2009)
Micusik, M., Bonnefond, A., Reyes, Y., Bogner, A., Chazeau, L., Plummer, C.J.G., Paulis, M., Leiza, J.R., Morphology of Polymer/Clay Latex Particles Synthesized by Miniemulsion Polymerization: Modeling and Experimental Results Macromol. React. Eng. 2010, 4, 432 (2010).
Houphouet-Boigny C., Plummer CJG, Vacche SD, Michaud V, Wakeman MD, Månson E. J.-A., Hybrid Glass Mat-reinforced Polypropylene-Montmorillonite Nanocomposites, J. Comp. Mater. 44, 1975 (2010).
Delabarde, C., Plummer C.J.G., Bourban, P.-E., Månson E. J.-A., Solidification behavior of PLLA/nHA nanocomposites, Comp. Sci. & Tech. 70, 1813 (2010).
Plummer C.J.G., Ruggerone R., Negrete-Herrera N., Bourgeat-Lami E., Månson J.-A.E., Small Strain Mechanical Properties of Latex-Based Nanocomposite Films, Macromol. Symp. 294, 1 (2010).
Dalle Vacche, S., Plummer C.J.G., Houphouet-Boigny C., Månson E. J.-A., Morphology and mechanical properties of isotactic polypropylene glass mat thermoplastic composites modified with organophilic montmorillonite, J Mater Sci 46, 2112 (2011). Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.
Hilal Lashuel2012-2013 Visiting Professor, Standford University. Stanford School of Medicine
2011- Associate Professor of Life Sciences-Brain Mind Institute-EPFL
Dir. Laboratory of Chemical Biology of Neurodegeneration
2005-2011 Assistant Professor of Life Sciences-Brain Mind Institute-EPFL
Dir. Laboratory of Molecular Neurobiology and Neuroproteomics
2005-2008 Director- EPFL Proteomic Core Facility
2002-2004 Instructor of Neurology- Harvard Medical School and Brigham and Women's
Hospital
2001-2002 Sabbatical Fellow- Laboratory for Drug Discovery in Neurodegeneration
Harvard Medical School,
2001-2002 Post-doctoral Fellow- Center for Neurologic Diseases
Harvard Medical School and Brigham and Women's Hospital
Advisor- Prof. Peter T. Lansbury
2000-2001 Research Scientist, The Picower Institute for Medical Research, Great Neck
New York
1994-2000 PhD Student; Texas A&M University and the Scripps Research Institute
Advisor- Prof. Jeffery W. Kelly
1990-1994 B.S. City University of New York, Brooklyn College
Dr. Hilal A. Lashuel received his B.Sc. degree in chemistry from the City University of New York in 1994 and completed his doctoral studies at Texas A&M University and the Scripps Research Institute in 2000. After obtaining his doctoral degree, he became a research fellow at the Picower Institute for Medical Research in Long Island New York. In 2001, he moved to Harvard Medical School and the Brigham and Women's Hospital as a research fellow in the Center for Neurologic Diseases and was later promoted to an instructor in neurology at Harvard Medical School. During his tenure (2001-2004) at Harvard Medical School his work focused on understanding the mechanisms of protein misfolding and fibrillogenesis and the role of these processes in the pathogenesis of Parkinson's and Alzheimer's disease. In 2005 Dr. Lashuel moved Switzerland to join the Brain Mind Institute at the Swiss Federal Institute of Technology Lausanne as a tenure-track assistant professor in neurosciences. Currently, Dr. Lashuel is an associate professor of life sciences and the director of the laboratory of molecular and chemical biology of neurodegeneration. (http://lashuel-lab.epfl.ch/).
Research efforts in the Lashuels laboratory focus on understanding the molecular mechanisms of neurodegeneration and developing novel strategies to diagnose and treat neurodegenerative diseases such as Alzheimers and Parkinsons disease. Research in the Lashuel lab is funded by several international funding agencies and foundations, including the Swiss National Science Foundation, European FP7 program (Marie Curie and ERC grants), Human Science Frontiers, Strauss Foundation, Cure the Huntingtons disease foundation and Michael J Fox foundation and is supported by collaborations with pharmaceutical and biotech companies (http://lashuel-lab.epfl.ch/page-50538-en.html), Nestle, Merck-Serono, AC Immune and Johnson and Johnson.
Dr. Lashuels research has resulted in the characterization of novel quaternary structure intermediates on the amyloid pathway, identification of potential therapeutic targets, and new hypotheses concerning the mechanisms of pathogenesis in Alzheimers disease, Parkinsons disease and related disorders. Dr. Lashuel scientific contribution to this field includes i) more than100 publications in major peer reviewed journals including Nature journals, Cell, PNAS, JBC, J. Neuroscience JACS, and Angewandtie Chemie; ii) three patents on novel strategies for preventing protein aggregation and treating autoimmune and inflammatory diseases; iii) more than 150 invited lectures since 2002 and more than 5500 citations (7800 citation-Google Scholar) since 1996. Dr. Lashuel has received several pre-doctoral and post-doctoral awards and fellowships and was the recipient of two prestigious awards given to young investigators; Human Science Frontiers young investigator research award and the European Research Council (ERC) starting independent researcher grant and the ERC proof of concept award (2013) These awards provide more than $2.5 Million to Dr. Lashuel to translate some of his ideas and projects into novel strategies for diagnosing and treating neurodegenerative diseases such as Alzheimers and Parkinsons disease. Dr. Lashuel has chaired and co-organized several international conferences and serves as an academic editor for PLoS ONE, an associate editor for frontiers of molecular neuroscience, member of the Editorial advisory board of ChemBioChem and ad hoc reviewer for several international scientific journals and funding agencies. Nikolaos StergiopoulosEducation
MTE, Managing the Technology Enterprise Program (2000), IMD, Lausanne
Ph.D. in Biomedical Engineering & Engineering Mechanics (1990) Iowa State University, Ames, Iowa.
MS in Biomedical Engineering (1987) Iowa State University, Ames, Iowa.
Diploma in Mechanical Engineering (1985) National Technical University of Athens.
Professional Activities
2002 - present: Professor and director of LHTC
2010 - present: Founder and director of Rheon Medical SA, Préverenges, Switzerland
2008 - present: Founder and director of Antlia S.A., PSE-C, EPFL campus, Switzerland
1998 - 2007: Founder and Scientific Director of EndoArt S.A., Lausanne, Switzerland
1996 - 2002: Assistant professor at the Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland.
1991 - 1996: Research Associate at Swiss Federal Institute of Technology - Lausanne
1990 - 1991: Lecturer, Iowa State University