Claudio BruschiniClaudio Bruschini holds an MSc in high energy physics from the University of Genova and a PhD in Applied Sciences from the Vrije Universiteit Brussel (VUB). He started his career with INFN (Italy, 1993), in the WA92 CERN collaboration (particle physics), and then moved to CERN as a Fellow in the European GP-MIMD2 project, attached to the NA48 collaboration (particle physics, parallel programming, 1994-1995). He then started his close collaboration with EPFL, first in the DeTeC (Demining Technology Center) project (sensors for landmine detection/humanitarian demining, 1996-1997). After DeTeC's end, he started the first of a series of fruitful collaborations with the Vrije Universiteit Brussel (VUB) on humanitarian demining related R&D (1998). This was followed by the EUDEM survey project (The European Union in Humanitarian Demining, 1998), the EUDEM2 three year EC sponsored support measure (www.eudem.info, 2001-2004), and the DELVE support action (www.delve.vub.ac.be, 2007). In parallel he started working within the EPFL's AQUA group (Advanced Quantum Architectures, Edoardo Charbon), on topics as diverse as ultrasonic sensors for in-air application, optical 3D and high speed 2D sensing, sensor networks, or tracking/motion capture systems, in particular for the preparation of research projects. This culminated in the European MEGAFRAME (www.megaframe.eu, FP6, 2006-2010, SPAD arrays and related in-pixel time stamping electronics in deep submicron CMOS technology) and SPADnet (www.spadnet.eu, FP7, 2010-2014, networked SPAD arrays for Positron Emission Tomography) projects, coordinated by EPFL-AQUA. As from 2009 he also worked with Dario Floreano on the management of the CURVACE Curved Artificial Compound Eyes FP7 project (www.curvace.org), coordinated by EPFL-LIS. He was also active with CHUV (Lausanne University Hospital) within EndoTOFPET-US (endoscopic PET) as well as on a CTI project devoted to the development of a new hand-held standalone tool for tracer-guided medical procedures. In 2014 he had also the pleasure of joining the EPFL ICLAB of Christian Enz during its ramp-up phase, collaborating on device related topics (SNF GigaRadMOST) and biomedical R&D (NanoTera WiseSkin). Claudio is now fully with EPFL’s Advanced Quantum Architecture (AQUA). He has also been active as independent scientific consultant, under the label CBR Scientific Consulting, on the preparation of (European) R&D project proposals and the execution of individual studies, and worked in 2006 for a local start-up as operations manager and R&D advisor.... but this is another story. An unauthorized early biography is available at http://lami.epfl.ch/team/claudiob/... Pierre-André FarinePierre-André Farine received the Doctoral and Engineering Degrees in Microtechnology from University of Neuchâtel, Switzerland, respectively in 1984 and 1978, and the Engineering in Microtechnology from ETS Le Locle in 1974.
He was working 17 years for the Swiss watch industries (Swatch Group), including developments for high-tech products, such as pager watches, watches including integrated sensors such as pressure, compass, altimeter and temperature sensors for Tissot. He was also involved in prototypes developments for watches including GPS and cellular GSM phones.
Since 8 years, he is Professor in Electronics and Signal Processing at the Institute of Microtechnology IMT, University of Neuchâtel, Switzerland. Full professor at EPFL since January 1st, 2009, he works in the field of low-power integrated products for portable devices, including microelectronics for wireless telecommunications, UWB and GNSS systems. He is Head of the Electronics and Signal Processing Laboratory ESPLAB of the EPFL IMT-NE. His laboratory works also for video and audio compression algorithms and their implementation in low power integrated circuits.
Pamela Isabel Delgado BordaI am a PhD student in the School of Computer and Communication Sciences at EPFL. I am part of the Operating Systems Laboratory and my advisor is Prof. Willy Zwaenepoel. I received my Bachelor's degree in Systems Engineering from Universidad Catolica Boliviana, Bolivia in 2008 and Master's degree in Computer Science, specialization Foundations of Software from EPFL in 2012.
Maher KayalMaher Kayal received M.S. and Ph.D degrees in electrical engineering from the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) in 1983 and 1989 respectively. He has been with the Electronics laboratories of the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) since 1990, where he is currently a professor and director of the Energy Management and Sustainability" section. He has published many scientific papers, coauthor of three text books dedicated to mixed-mode CMOS design and he holds eleven patents. His technical contributions have been in the area of analog and Mixed-signal circuits design including highly linear and tunable sensors microsystems, signal processing and green energy management.
Prizes and Honors
Electronics Letters journal Premium Award 2013,
Outstanding Paper Award? IEEE Mixdes 2013
Basil Papadias paper Award, IEEE Powertech 2013
Best Paper Awards, Mixdes 2013
Best Paper Awards, ICCAS 2012
Outstanding Paper Award- IEEE Mixdes 2012.
Poland Section IEEE ED Chapter special award in 2011.
Credit Suisse Award for Best Teaching- 2009.
The William M. Portnoy Award at the Energy Conversion Congress and Exposition , California Sept 2009.
Best Paper Award - IEEE-Mixdes 2009.
High Quality Paper - IEEE Power Tech Conference June 2009.
Best Paper Award - IEEE-Mixdes 2007.
Best Paper Award - IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics - 2006.
Best Application Specific Integrated Circuit at the International European Design and Test Conference ED&TC - 1997.
Ascom Award for the Best Work in Telecommunication Fields 1990.
Publications Books.
Books:
Methodology for the Digital Calibration of Analog Circuits and Systems, Marc Pastre & Maher Kayal. Springer Publisher- (ISBN 1-4020-4252-3)-2006.
Structured Analog CMOS Design, Danica Stefanovic & Maher Kayal. Springer Publisher-(ISBN 978-1-4020-8572-7)-2008.
Linear CMOS RF Amplifiers for Wireless Applications, Maher Kayal, Springer Publisher. (ISBN 978-90-481-9360-8)-2010.
Coeditor of Microelectronics Education Kluwer Academic Publishers. (ISBN 1-4020-2072-4). -2004.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Iurii TimrovProfessional employment
Postdoctoral researcherFebruary 2016 - presentAdvisor: Prof. Nicola MarzariPlace: STI IMX THEOS, Ecole Polytechnique Federale de Lausanne (Lausanne, Switzerland)Postdoctoral researcherJuly 2013 - January 2016Advisor: Prof. Stefano BaroniPlace: Condensed Matter Sector, Scuola Internazionale Superiore di Studi Avanzati (Trieste, Italy)Postdoctoral researcherApril 2013 - June 2013Advisor: Dr. Nathalie VastPlace: Laboratoire des Solides Irradies, Ecole Polytechnique (Palaiseau, France)
Education
PhDSeptember 2009 - March 2013Advisor: Dr. Nathalie Vast Place: Laboratoire des Solides Irradi'es, Ecole Polytechnique (Palaiseau, FranceTitle: Ab initio study of plasmons and electron-phonon coupling in bismuth: from free-carrier absorption towards a new method for electron energy-loss spectroscopyDate of defense: 27.03.2013Honors: PhD degree in physics with honors ("Tres honorable")Master in PhysicsSeptember 2008 - June 2009Place: Department of Theoretical Physics, National Taras Shevchenko University of Kyiv (Kyiv, Ukraine)Honors: Master's degree with honorsBachelor in PhysicsSeptember 2004 - June 2008Place: Department of Theoretical Physics, National Taras Shevchenko University of Kyiv (Kyiv, Ukraine)Honors: Bachelor's degree with honorsHigh School StudiesSeptember 1994 - June 2004Place: Collegium 11 (Chernigov, Ukraine)Honors: Honors degree with a Gold medal